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ABSTRACT

The purpose of this contract was to determine the effect of the synthesis
approach (single or multirate) on the machine requirements for a digital
control system for the space shuttle boost vehicle. The study encompassed
four major work areas: synthesis approach trades, machine requirements

trades, design analysis requirements and multirate adaptive control techniques.

The primary resuits of this study are two multirate autopilot designs for the
flow Q and maximum Q flight conditions that exhibits equal or better performance
than the analog and single rate system designs., Also, a preferred technique

for analyzing and synthesizing multirate digital rontrol systems is specified.

KEY WORDS

Adaptive Control
Computer Requirements
Digital Body Bending Compensation

Multirate Digital Control
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1.0 INTRODUCTION

Single rate digital autopilot designs have been plagued by the divergent require~ !

ments of sampling at a high rate to prevent folding unwanted signals into the band-

width of the control system while also trying to keep the sampling rate at a mini- ;
mum to avoid finite accuracy arithmetic problems. The solution to this problem is
to go to a multirate design where the sampling rates for the various computations can
- be specified in a more consistent manner. For example, cascade multirate filters can
be defined with a fast update rate front end to circumvent the folding problemn and

2 | to allow optimal performance of the high frequency filter requirements. The low

,, frequency back end filter can be defined to alleviate arithmetic problems while

- meeting the low frequency filter requirements. Similarly, multiloop multirate de-

4 signs can be used to meet different sampling rate requirements in different loops.

{ 1.1 Study Approach
- ‘ This study was performed to determine multirate analysis techniques and to study the

| { effect of the system synthesis approach (single or multirate) on the machine require~
‘ - ments for a space shuttle type boost vehicle at low Q and maximum Q flight con-
% “ ditions. The applicability of adaptive control techniques to space shuttle was also
o .investigated,
v .

' The study activities car, be grouped into the following major work areas:
{ | " Synthesis Approach Trades

Machine Requirement Trades

Design Analysis Requirements

Multirate Adaptive Control Techniques

This report is divided into sections covrring these four tasks. A summary of the

major study activities is given below,

The Synthesis Approach Trades task is involved with appiying synchronous and multi-
rate sampled data analysis and realization techniques to two fixed point in time

1
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~ linearized models of the plant and control system furnished by NASA-JSC. First,

the models were verified on the Boeing «nalysis program MDELTA and then the
analog control system was digitized using Tustin's bilinear transformation with fre-

quency prewarping. Next, a digifall control system was designed starting with a

‘z-transformed model of the plant, Lastly, a multirate control system was designed. -

Comparisons were made between the gain and phase margin characteristics for. the

different designs. Hybrid simulations of the systems were implemented and the

“analysis results were verified using these simulations.

The objective of the Machine Requirements Trades task was to determine the effect
of the synthesis approach on the machine requirements. The primary machine re-

quirements and the effect of sampling rate on these requirements are reviewed. The
machine requirements for a synchronous implementation versus o multirate implemen=-

tation are discussed,

The Lesign Andlysis task involved studying techniques for analyzing multirate sampled

data systems. The primary existing techniques are reviewed and the state variable
approach is discussed in detail. This latter approach was used to perform the analy-

sis work in Task i,

A litarah re search and study of various parameter adaptive control schemes were
conducted. Extensions to these techniques to moke them applicable to a shuttle
type application are outlined. The pseudo adaptive autopilot used on the SRAM
missile is discussed, Two possible digital implementations for these adaptive control
systems are discussed. -
1.2 Study Results

The contract findings are summarized in the following paragraphs:

Synthesis Approach Trades ~ Single rate and multirate yaw plane autopilots were

designed for the two fixed point in time plant models. For the low Q system the

single rate and multirate designs gave near identical performance when judged in
terms of frequency response characteristics although the multirate design exhibited
slightly better phase stabilization of the finst bending mode, From a frequency

2
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response standpoint, the max Q multirate design gave much better gain stabilization
of the body bending modes than the single rate system. The hybrid simulation re-
sults verified ﬁ_\o‘ analysis predictions in all coses considered. A multirate design
methodolngy was developed and is outlined below:

1. Continuous root locus |
2, Z-plane root locus and frequency response at sampling rates
 of interest
3. Determination of high update rate and low update rate filter
requirements
4, Multirate frequency response and root locus
5. Fine tuning multirate design based upon (4).

Machine Requirements Trades -~ The effect of the sfngle rate and multirate designs

resulting from Task 1 on ‘e machine requirements was negligible from a computer

wordlength standpoint. This is primarily due to the fact that the allowable range
in variation of the sampling period was restricted to a positive interger times T = .04
sec. which is the basic frame time for the Space Shuttle G&C computer. It was
determined from both folding and stability standpoints that the lowest acceptable

-sampling rate had a period of T = .08 seconds. The frame time of .04 sec, was

slow enough to begin with to preclude any finite accuracy arithmetic problems for
the filters considered for this system. The multirate design did free up computer
time over the T = .04 single rate designs as not all the computations needed to be
performed every cycle. Also, the max Q multirate design s a simpler design to
implement because it was possible to replace a first order filter by a sample and
hold element. The hybrid computer wordlength studies verified *he aforementioned

conclusions as they showed that all filters could be implemented on a 16 bit computer.

Design Analysis Requirements ~ The two primary techniques that were studied for

on.lyzing multirate systems were the switch decomposition method of Kranc [11]

ond the state transition approach of Kalman ond Bertram [3]. The switch decompo-
sition technique is shown to present severe computer implementation problems in the
area of separating the branch variables from the loop equations. The state varidble

3
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approach is demonstrated to be straightforward to apply to a wide class of sampled ’ t

data systems and to be easily implemented on a digital computer. The state transition
method is therefore recommended for analyzing multirate systems and a preferred (
method of defining the state transition matrices is specified.

Multirate Adaptive Control Techniques - The parameter adaptive control algorithm of L

Lion [22]is shown to offer the best chance for doing online adaptive control based
upon identifying the vehicle characteristics. Pseudo-adaptive control techniques os
used on the Boeing SRAM are also outlined and look as if they would offer le:s

s

technical risk than a full adaptive system. e
i
|
i B
;
¥
4 N
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2.0 . . NTHESIS APPROACH TRADES

The purpose of this section is to outline a methodology for designing multirate
compensation for sample data control systems. To ~eet this goal, the section is
broken into seven subsections. Subsection 2.1 presents two analog plant models

which are used as examples in developing the design methodology. Subsection 2.2
addresses how different sampling rates c..: affect the control system performance. In
Subsection 2.3 synchronous compensation is formed by applying Tustin's methud with
frequency scale pre-warping to the analog compensation in the two plant models.
Subsection 2.4 presents a single rate digital design for one of the plant models where
the analog compensation has been removed and replaced with a sampler and zero-order
hold. Subsection 2.5 presents a multirate design for both plant models. In Subsection
2.6 the results of a simulation which verify the multirate designs are presenied. Sub-
section 2,7 summarizes Section 2.0 with a general outline on the methodology tc use

in designing multirate systems.

2.1 Continuous Plont Gain and Phase Margins

The block diagrams of the two plant models used in developing the digital filters are
shown in Figures 2.1.1 and 2.1,2. Both systems model the yaw dynamic of the space
shuttle, The first system is for the lift off or low Q flight conditions. The second
system is for the max Q flight conditions. In each ccie the design criterion is the
saie. The digital compensation is to replace the analog compensation while meeting

the following constraints:

1) The rigid mode gain and phase margins are to duplicate those of ke
continuous system.

2) The first body bending mode is to be phase stabilized.

3) The higher body bending modes are to be gain stabil ized.

The Nichol's chart for each of these systems where the loop has been opened at K is
shown in Figures 2,1.3 and 2.1.4.

5
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2.2 Sampling Rate Requirements
The choice of the sampling frequency is of prime importance when converting an

analog system to a sampled data system. If analog break frequencies in the con-
tinuous system are grecteri than half the sampling frequency, :’z_s__ , the poles
corresponding to these frequencies will fold into the primary strip. If a pair of poles
fold near the @ = 0 region it can adversely affect the rigid mode dynamics.
Choosing a larger sampling rate alleviates this problem, but too large a rate can
cause the system to be driven by truncation errors. A hoppy median needs to be
selected in orier to avoid these problems. In Section 2.0 the sampling rates of

T = 0.04 seconds and T = 0.08 seconds are used for the synchronous and multirate

designs. In Section 3.0 the problem of choosing a proper sampling rate is treated in

greater detail .

2.3 Digitized Continuous Aulfop ilot

Low Q Sx..-‘em

2
The continuous autopilot Gc(s) = a0 can readily be digitized using Tustin's

(5 +10)2 2 7.1
method with frequency scale pre-warping. This ;nvolves replacing S with F oI T
o 2 “A
and the analog break frequency with -T-tan(__z__—) E

In order iu reduce coefficient sensitivity problems G (s) is implemented as two

cascaded first order filters. The general result for one of the cascaded first order

{ AT @pT -1
tan (—T—) tan (——-2——) z

mAT (uAT
1 + tan (-—2-——) 1+ tan ——-2——)

fi'ters is as follows:

10
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where ®, = analog filter break frequency

T = sampling rate
_ ST
zZ=e .
With sampling periods of T = .04 and .08 seconds and an analog break frequency of
©, = 10 rad/sec. this equation becomes

T=.04
-1
D'(z) = 01&537 (l + Z-|)
: 1 - .66292512
T=.08
-1
D](z) - 2971743 (1 + iT)
1 - .405651282
The corresponding digital representations for G (s) = 18.9 | also follow by applyi
ponding dig P s EXVA w Dy applying

Tustin's method.

They are
T = .M -]
D) =0.265 — (12 )
b - 0.2504z
and
T = 008 -‘
Dz =o0usez 1z )
1 + 0.3056z

In order to complete the digital design a digital filter is added to compensate for
the phase and gain introduced by the zero order hold. The compensation used in this

design is the simple lead-lag filter given below. Placing the pole and zero on the

140.3 2"
1+0.8 z-r

Gelz) =1.3846

1
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negative real oxis inside the unit circle allows good zero-order hold compensation

for.smal | frequencses (w < 75-) and gain attenuation from the zero-order hold for
large frequencies (75- L0 -2—) The corresponding Nichols charts for the
low Q system with T = 0.08 and 0.04 seconds are shown in Figures 2.3.1 and 2.3.2.

Max Q System
In this section the effects of digitizing the analog compensation for the max Q model

are discussed. For sampling intervals of T = 0,04 and T = 0.08 seconds the digital
filters for the continuous autopilot G(S) =0. 6

and the compensation in
S 8,],, e

LY

the acceleration feedback loop G4(S) = l-S 1 J LS - 5] are as follows:

T = 0.04

7 Tustin's [G (s)] - 04 0.161379(z + 1) 3
Frequency ¢ 1.161379z - 0.838621
Pre-Warping
Tustin's )
Frequency [ 1] -= 0.020003(z + 1)
Pre-Warping | ¢ * 1 1020003z - 0.979597

7 Tustin' )

LF:q:JZ:Cy 375 ] - [ 0.365028(z + 1) ]
Pre-Warping LS+ 17-5 T.365028z - 0.634972

T =0.08
[3 ] 3

g Justin's . 0.331389(z + 1)
Frequency Gl 0.6 1.331389z - 0,568611
Pre-Warping

Zin's "1 1 - [+ 0.040021z + 1)
requency. s+ 1]  |[7.040021z - 0.9599/9
Pre~Warping - .

77 Tustin's 7.5 ] - 0.842288(z + 1)
Frequency SF17.5 1.842288z - 0.157712
Pre-Warping L

12
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The Nichol's charts for the max Q system with just the analog autopilots digitized are
shown in Figures 2.3.3 and 2.3.4. Both frequency responses closely resemble the fre-

quency response of the continuous system shown in Figure 2.1.4,

The effects of including the digital compensation in the accelerometer feedback loop
are shown in Figures 2,3.5 through 2,3,10. Figures 2.3.5 and 2.3.6 show the fre-
quency response of the max Q system with one of the lag filters of G(s) digitized.

The Nichol's chart of the system with 'IT::lshns
equency
Pre-Warping
Tustin'e
Frequency
Pre-Warping

[s—l*_—'—] is shown in Figure 2.3.5

; r 17 - 1 - M - - ~ ~n r 4
and the frequency response with l. i7.5 J is shown in Figure Z2.3.6.

s+17.5

in Figures 2.3.7 and 2.3.8 both lag filters jn the acceleration compensation are
digitized. The compensation for the zero-order hold is given below and is the same
lead-lag filter used with the lift-off flight model.

- z + 0,3
GZOH . 1.3846 z + 0.8

Digitizfng the compensation in the acceleration feedback loop illustrates an important
point which should be kept in mind when using Tustin's method to synthesize digital
first order lag filters. If the object is to design compensation for a sample data sys-
tem, using Tustin’s method with frequency pre-warping is the some as designing in the
w-plane. If Tustin's method with frequency pre-warmping is used to digitize analog
compersation, however, the resulting digital filter is used to approximate the analog
filter's frequency response. Usually this is a good opproximation. As shown in
Figures 2.3.3 through 2.3.6 the rigid mode gain and phase margin for the portially
digitized max Q system differs slightly from the phase and gain margins of the con-
tinvous system. When all of the analog compensation is digitized, however, the
approximation begins to break down. For T = 0.04 seconds the gain margin drops from
9.14db to 6.12 db and the phase margin from 51.16° to 42.69°. In addition,the loop
at 8 radians/sec. present in Figures 2.3.3 through 2.3.6 is missing in Figures 2.3.7
and 2.3.8. This results from a pair of complex zeros located inside the unit circle

near 8 radians/sec. moving outside the unit circle when all of the analog compensation
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is digitized. The root locus of the max Q system with just the continuous autopilot
digitized and the root locus with all of the compensation digitized illustrate this point.
They are respectively shown in Figures 2.3.9 and 2.3.10 for T = 0.08,

2.4 Digital Autopilot Design for the Low Q Model

As a starting point in the design of a digital autopilot, frequency response plots are
run for the low Q model with the analog compensation replaced with a sampler and
zero-order hold, The black diogram of the system is shown in Figure 2.4.1. The
uncompensated frequency response plots == shown in Figures 2.4.2 and 2.4,3 where -
the loop has been opened at K. From these plots it is seen that compensation - '.Ich
-vould phase and gain stabilize the rigid mode and first body e *ding mode and in

uddition reduce the system gain at frequencies above 11.50 radians/second is required.

: v,
8. Vehicle Dynamics |y é
at ‘ K'ﬁ
L Attitude Sensor
—=! ZOH
1
& |ehicle Dynamics |y K
at v
L Rate Sensor |
K
Figure 2.4.1: Block Diagram of Uncompensated Low Q System ‘
L
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l Digital System Design for T = 0.08 Seconds

Based upon studying the frequency response in Figure 2.4.3 the rigid mode is phase
\ and goin stabilized with the digital equivalent of the following s-plane filter,

_ 8 12
| Gls) = 0.6764 (s pg) (S ﬂ2)

The digitized version of this filter using Tustin's method with frequency scale pre-
warping is as follows:

: 10.2489 Z + 0.2489 0.34237 Z +0.34237
Glz) = 0.6764 ( Z - 0.50219 ) ( Z - 0.3153 )

1]

The Nichol's chart is shown in Figure 2.4.4.

. It was noted in Section 2.2 that o small sampling frequency will cause analog break

frequencies to fold into the primary strip. This is the case for T = 0.08 seconds.

The body bending poles at +49,67 rad/sec. in the continuous system fold into the
primary strip at £28.87 rad/sec. for the digital system, near the vicinity of the

second and third body bending poles. This presents an advantage in designing the

body bending mode compensation. By introducing a notch filter at 27.5 rad/sec.,
additional gain margin is given to each of the three higher body bending modes as

well as introducing phase lag to the first body bending mode. The phase lag from

the notch filter is used to help center the first body bending mode about the -1 point
on the Nichol's chart. Figures 2.4.5 and 2.4.6 show the exploded

root locus of the rigid mode compensated system and the rigid mode compensated
system with a digital notch filter included. The zeros located at z = -0.580 + j 0.750
pull the body bending poles at +27.54 rad/sec qwoy.from the unit circle at right

angles for small values of the open loop gain K. This makes the gain margin of the

third body bending mode very sensitive to K. The location of the complex poles to

complete the digital notch filter are placed along the constant frequency lines at

z = -0,4738 + j 0.6446, The digital notch filter then becomes

0.845922 + 0.981272 + 0.76040
D3 (z) -

o 22 + 0.94758z + 0,64

' ‘The corresponding Nichol's chart is shown in Figure 2.4.7,
n z
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Digital System Design for T = 0.04 Seconds |

This section provides a digital autopilot design for the low Q mcdel ot T = 0.04
seconds. In Section 2.5 the design is combined with the autopiiot design at T = 0.08 l
seconds to prcvide a multirate digital autopilot for the low Q model.

As a starting point in designing a digital autopilot the phase -:. . gain margins are |
set for the systems rig'! mode. This is accomplished by the digital equivalent of
the following s-plant filter ‘ l

G (s) = 0.8279 ( sfg )( S?W ) | l

~ The digitized version of this filter using Tustin's method with frequency scale pre- |

warping is as follows.

_ 0.13895z + 0.13895) (0.19660z + 0.19660 |
G (2) = 0.8279 (——Wz = 0. ) ( Z = 0806751 )

The corresponding Nichol's chart is shown in Figure 2.4.8, {

To increase the gain margin of the three higher body bending modes a digital notch
filter is used, Figures 2.4.9 and 2.4.10 respectively show the root locus of the rigid
mode compensated system and the rigid and body bending mode compensated system.

For the rigid mode compensated system the body bending poles at +27.34 rad/sec

migrate outside the unit circle for a small value of K. This is evident from both the ‘
root locus in Figure 2.4.9 and the Nichol's chart in Figure 2.4.8. In Figure 2.4.10

the body bending poles at £27.54 rad/sec are pulled into the compensation zeros ‘
located at z = +0.4000 + j 0.8500. This keeps the third body bending poles inside

the unit circlz. The location of the complex poles to complete the digital notch |
filter are placed at z = +(,3500 + j 0.4873. The complete digital notch filter is

given by D(z) . '

[ 2% - 0.800z + 0.8825
D@ = (5
- 0.700z + 0.3600
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The Nichol's chart for the rigid and body bending mode compensated system is shown
in Figure 2.4.11. It can be compared w - the rigid and body bending mode compen-
sated system at T = 0,08 seconds which is shown in Figure 2.4.7. '

At this point digital autopilots have been designed which meet or exceed the design
requirements imposed on the system by the continuous autopilot. In Section 2.5 the

multirate autopilots for the low Q and max Q systems are presented.

2.5 Multirate Autopilot

Two multirate digital outopilot designs are discussed in this section. First the low Q
digital autopilots at T = 0,04 and T = 0,08 seconds are used to form a low Q multi-
rate autopilot. This design will be used to outline a multirate design methodology
in Subsection 2.7. Next the max Q multirate digital autopilot design, using a zero
order hold as digital compensation in the acceleration feedback loop, is discussed.

Low Q Multirate Autopilot

A block diagram of the low Q multirate system is shown in Figure 2.5.1-. The rigid
mode is compensated at the slow sc;npl ing rate to keep the system design out of the

z = +] region in the z-plane. This helps reduce coefficient accuracy requirements and
keeps the system from being driven by round-off noise. The body bending filter is
used for compensating the higher frequencies and is therefore sampled at the higher
rate, This yields a higher ws/2 which minimizes the amount of noise folding into the

primary strip.

Having previously designed rigid and body bending mode filters for the single autopilot
the same filters are used for the multirate system. In Section 2.4 the rigid mode was
compensated at T = 0.08 seconds with the digital equivalent of the following s-plane

filter

Gl =K ( 8 ) ( 12 ) where K = 0.6764.
s+ 8 s+ 12
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Vehicle Dynamics

Attitude Sensor

Vehicle Dynamics
at
Rate Sensor
T =0.08

Figure 2.5.1: Block Diagram of Multirate Lift Off System
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The digitized version of this filter using Tustin's method with frequency scale pre-

warping is as follows:

G = K ( 0.2489z + 0,2489 0.34237z + 0.34237
z -0.50219 z - 0.3153

In Section 2.4 the body bending mode fiiter at T = 0.04 seconds was the following
D (2).
2% - 0.800z + .8825

D(z) = ¥
z - 0.700z + .3600

Combining D(z) and G(z) and using a K of 0.6839 a multirate design is constructed.
The frequency response and root locus plot for this system are shown respectively in
Figures 2.5.2 and 2.5.3. To get slightly better phase stability on the first body
bending mode the compensation poles in Figure 2.5.2 are moved to z = -0.18 +}0.3177.

This corresponds to z = 0.3 £ j 0.519 for T = 0.04. The Nichol's chart for this sys-

tem with K = 0.81283 is shown in Figure 2.5.4.

Examining Figures 2.4.11, 2.4.7, 2.1.3 and 2.5.4 reveals the multirate autopilot
design for the low Q model has no distinct advantage over the single rate design.
The four frequency responses all meet the same phase and gain margin requirements.
In addition the rigid mode compensation for both sampling rotes is well removed from
the z = +] point. Therefore a multirate system yields no computational advantage

over a single rate system.

Maximum Q Multirate Autopilot

The continuous maximum Q autopilot design as shown in Figure 2.1.4 is used as a
starting point for the maximum Q multirate design. The continuous system has two lag
filters in the accelerometer loop ~~ one breaking at 1 rad/sec and the other breaking
at 17.5 rad/sec. The 1 rad/sec lag filter is being used to reduce the bandwidth of
this loop while the 17.5 rad/sec filter is used to attenuate body bending effects.

The max Q multirate design is very similar to the analog design, The 1 rad/sec

analog filter is left in the loop to reduce the bandwidth of the sampled acceleration
signal and o sample and hold operating at a sampling rate of T = .08 sec is used in-
stead of the log filter at 17.5 rad/sec. The sampler and hold contributes a phase lag
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of 40.1° and a gain attenuation of .74 db at 17.5 rad/sec and the char-
acteristics are very similar to a lag filter ot higher frequencies. This design simplifies
{ the requirements for the acceleration loop compensation while not degrading system
| performance. For the multirate design the forward loop analog compensation is replaced

; with a digital autopilot given by

T=0.04
T '. ] 3 3
< Fus in's [ 4 ] . 0742207 ( z + 1)
requency Y. o = z = 851559
Prewarping

where K = ,33113,

Figure 2.5.5 gives the Nichol's Chart for this multiloop multirate autopilot. The phase

§ and goib margins of the rigid mode duplicate those of the continuous system and the
gain and phase margins of the body bending modes have been increased. A definite

improvement has been made with the multirate design.

2.6 gerfbrmance Results

The performance results involve verifying the analysis results via a hybrid computer
simulation. Open -loop frequency response from the hybrid simulation is compared with
the open loop frequency response generated by the analysis. The hybrid computer is
used to generate a frequency response for the closed loop system

G(s) H(s)
I + G(s) A(s) °

: o The open loop frequency response, G(s) H(s), is derived from the measured closed loop

‘w(s) =

response by the following relationships.

Open Loop Gain

- Ke
{ Ko = -

| ‘/Ec - 2K, cos 8. + 1
{ _ Open Loop Phase

K

{ i 0y = g sin

- where K_ = closed loop gain 43
{ ‘ D180-18438-1
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This assures that all the poles in the simulation are not in the right half plane or

on the j @ axis for the continuous systems and not on or outside the unit circle for

the digital systems. The systems that were verified are discussed below.

Continuous Frequency Response for Low Q and Max Q Systems

The continuous systems were verified by running the frequency response for the original
analog control system/vehicle combinations. The simulation results are plotted in
Figure 2.6.1 and 2.6.2. These figures show the analysis results and simulation results

agree for the continuous system for all frequency values considered.

Digital Filter Programming Form

Since all the digital filters programmed were either lag filters or body bending filters
i.e. they involve attenuation, the direct canonic state variable programming form was
used to realize these filters. A general seco.d order representation for this program-
ming form is shown in Figure 2,6.,3. The relationship between the filter coefficients

and the scaled coefficients is as follows:

SFZo 1 1
= . ' =
S e X _rG] D DX -——1-—GI
S':Eo 1 1
A = ET A X < E'=E X ,
o 2 Gl
SFEO ]
B' = B X —=—1— G,' = Input Ist Summing Point
§FZ, Gy ! (Summing Gain)
SFE 1
c'= §?% Cc X A Gz' = |nput 2nd Summ.ing Poi.nt
o 2 (Summing Gain)

A scaled flow diagram is illustrated in Figure 2.6.4. In the results which follow on
the digital simulations the real axis pole-zero filters are realized aos first order filters

and complex pole-zero filters as second order filters.,

: 45
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Digitized Analog System for the Low Q Model, T =0.08

The next system considered was the digitized analog autopilot for the low Q system.
The analog autopilot was digitized using Tustin's method with frequency scale pre-
warping at T = 0.08 seconds. The comparison between the analysis generated and
simulation generated open loop frequency response data is shown in Figure 2.6.5.
Again the simulation results agree with the anclysis results for all frequencies con-

sidered.

Digital Design for the Low Q Model, T =0.08

This design was for the low Q model with the analog autopilot repliced with a sampler
and zero-order hold. The digital autopilot design aoppeared in Subsection 2.4, The
comparison between the analysis and simulation frequency response data is shcwn in

 Figure 2.6.6. The results agree for all frequencies considered.

Multirate Design for the Low Q System

The comparison between the analysis results and the simulation results is shown in
Figure 2.6.7. This plot shows that the analysis and simulation results agree per-
fectly ot low frequencies and begin to diverge at higher frequencies. This high
frequency effect was not noticed for the other digital filters because me frequency
response data was not taken at the higher hequencies. This divergence between the
simulation and the analysis results was expected because of the time delay due to
A/D setup time, computation time ind D/A setup time in the simularion. The time
delay equaled approximately .0GC6 secunds for the XDS 9300 used in the simulation.
The effect of a time delay is to add phase lag to the frequency response that is
given as follows:

0= -57.3 Ty

The triangle points represent the corrected simulator results when the pure time delay
effects are subfracted out. Therefore, any discrepancies between the results are

physically explainable.
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Multirate Des ign for the Max Q System

The comparison between the analysis and simulation results for the max Q multirate
design is shown in Figure 2.6.8. The results are seen to agree within the accuracy

of the simulation for the frequencies considered.

2.7 Multirate Design Methodology

The following is a general outline to adhere to in designing multirate digital control
systems. It follows closely the procedure used in designing the low Q multirate

digital outopilot.

1. Root Locus of Continuous System - This allows the designer to see the effects

of different sampling rates on the folding of system poles into the primary strip.
No matter where the poles of a continuous stable system are located they will

appear between % ws/Z for the sampled data system.

2. Z-Plane Root Locus and Frequency Response at Sampling Rates of Interest

(Synchronous) - By the very nature of including a sample and hold element
~the root locus and frequency response of the system changes. A root locus
and/or a frequency response of the basic system is necessary to design any

type of system compensation.

3. Determination of High Update Rate and Low Update Rate Compensation

Requirements ~ This involves determining the compensation that is necessary
at the various sampling rates to meet the systems design requirements. This
can include not only the various filters that meet the gain and phase require-
ments of the system but the machine requirements, such as coefficient word

length, as well.

4, Multirate Frequency Response and Root Locus - From (3) a multirate sample data

control system is put together, To get a total system description a frequency

response and root locus plot are made.

5. Fine Tuning Multirate Design (Based upon (4)) - This can involve merely

adjusting the system gain or moving the compensation poles and zeros to get
the final design 54
D180-18438-1
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3.0 MACHINE REQUIREMENT TRADES

The objective of this section is to point out the various effects software and hardware
requirements impose on control system performance. Computer wordlength, A/D word-
length, sampling rate, $ynchronous versus multirate sampling, as well as how the arith-
metic operations are performed and what state variable form is used, all affect control
system performance. These considerations are treated in a general manner in Subsection
3.1. Subsection 3.2 presents a computer wordlength study which specifically answers

a number of the questions raised by these considerations for the low Q multirate design.
In Subsection 3.3 an assembly language program for the rigid and body bending mode
compensated system for T = 0.08 seconds is presented. The purpose of this subsection

is to give an indication of the storage and time requirements needed when a digital

design is implemented.

3.1 Machine Requirements/Synthesis Approach Tradeoffs

A block diagram of a digital computer and the necessary peripherals to interface this
system with both analog and digital devices is shown in Figure 3.1.1. In specifying
the machine requirements it is necessary to study the resolution and noise characteristics
of the various elements in this figure. For example the A/D element will have certain
requirements and the computer will have memory, word length, and execution time
requirements. The implication of these machine requirements will be discussed as they

affect the synthesis approach tradeoffs and vice versa.

—|A/D D/AL o
DIGITAL

COMPUTER
—=D/D [ D/O—

FIGURE 3.1.1: Hardware in a Digital Control System
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Coefficient Quantization

The accuracy that a digital computer can store a coefficient is dependent upon the
computer internal word length. The performance of recursive digital filters can be
adversely affected due to coefficient quantization, This problem has received con-
siderable attention in the past by Kaiser [11 and Rader and Gold [2]. The sen-
sitivity of a filter to coefficient quantization has been shown to be greatest when
the filter poles approach the plus one point in the z-plane. This situation arises
when the sampling rate is large 1elative to the frequency of the digital filter poles.
Due to the finite accuracy of a digital computer, the performance of a digital filter
may become less like its corresponding analog counterpart rather than more, as the

sampling rate is increased.

Some examples pointing out what is happening will now be reviewed. A simple first
order example that graphically shows the problem is the following case considered by

Rader and Gold [2]:
y (nT) = Ky (nT-T) + x(nT) (3.1)

The pole position for this filter is equal to K. When K is realized as K + AK the
error in pole location is AK. The importance of this error becomes magnified when

K is near unity. E.g., the maximum gain of this one pole filter is

1

max IG(Z) . (3.2)

Thus, as K approaches one the sensitivity of this filter to coefficient quantization

effects becomes large. As things turn out this situation arises frequently in digitizing

analog filters.

For example, the z-transform of a first order filter gives the following G(z):

G(z) = —_ (3.3)

56
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The Tustin approximation to a first order lag filter gives

T mA/Z
G(z) = (-'—;T-m) (z +1) (3.4)
A -Tw,
z- ( I +7 wA72 )
It can be shown that in the limit as T —==0 the denominators of both these equations

reduce to the form

D(z) =z -1+ @T+ ol (3.5)

Therefore, as T —= 0 the poles of these equations move toward the point z = 1 and

the filters become very sensitive to parameter quantization effects.

The Tusfin'sbapproximaﬁon to a lead lag filter gives the folloWing equation:

T T @
_ g P+ o [
G(z) = T z - 0 (3.6)

ANy .
| . —_—

1-L o

;- 2 s

|+T
7 “s

This equation is seen to have the same type of denominator as before but now the
numerator has a zero that migrates as a function T approaching the plus one point
as T=——==0. In this type of filter both the gain and phase become very sensitive

to coefficient quantization.

Similarly, for second order filters it has been shown by Rader and Gold [2] that
the coefficient sensitivity problem is compounded. They use the following second

order example to demonstrate their point:

y(nT) = Ky (nT-T) = Ly (nT=2T) + x(nT) 3.7)

57
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This filter has complex poles in the z-plane given by
{0
P =re : - (3.8)

where .
r= YL
0= cos-] K/2 /-I.—
Explicit expressions can be derived for the pole position errors caused by quantization

of K and I, if it is assumed that the errors are small so that Newton's approximation
PP

can be upplied, i.e.,

ar= - AL+ 3 Ak

4 (3.9)

_ a0 : 90
Using the expressions for r and @ these equations become
1
Ar = ——2—-;-— AL
- AK . (3.10)

AG = AL/2 l_2 tan © /2r sin ©

The error in the radius r is similar to the first order case while the error in the
resonant angle © is seen to be very sensitive at small angles. The resonant frequency
error can also be seen to be inversely proportional to the sampling period T based

upon the relationship

A9 = Aer (3.11)

Research by Kaiser [1] has further pointed out that the bound on coefficient accu-
racy is dependent upon the order n of the filter as well as the sampling rate. Because
of the multiplications involved between coefficients, it would take twice as many
digits of accuracy to represent the coefficients of a 2 nth order filter versus an nth
order filter, From the previous results, it has been demonstrated that increasing the
sampling rate requires an increase in the accuracy of the digital approximation to the
filter coefficients. 58
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: i Thus, a potential benefit can be gained in terms of computer internal word length
requirements by decreasing the sampling rate. This is especially true for filters with
poles in the vicinity of the plus one point in the z-plane. Root locus methods have
been applied to study the migration of filter poles and zeros as a function of sampling
period T to aid in the proper choice of T. Likewise, by realizing the filters as low
order elements the computer internal word length requirements can again be reduced.
In general, the transfer functions of a digital controller are realized in the cascade
S form:

. 2
m z -z n 2+ biz + c:i
b= Il K {=—p— r_[ K; 7 (3.12)

i=1 z+¢:|iz+ei

The real pole and zero filters are realized as first order elements and the filters with
complex poles and zeros are realized as second order elements. It i also possible to
realize these filters in the analogous parallel form. The pros and cons of the parallel

over cascade realization will be discussed in the section dealing with arithmetic noise.

A/D Requirements

The requirements on this element are primarily due to resolution and noise level, The

resolution capability of the device is proportional to the number of binary bits used to
represent the analog signal. The A/D quantization step is generally chosen so that it
. preserves the basic occuracy of the sampled signal . The effect of the A/D device on
filter performance can be statistically analyzed by considering additive noise at the
input to the filter computation. Assuming each noise sample is uncorrelated and has
variance E02/12, the steady state variance of the filte- output due to this noise is

given by [2]:

: 2

l E

; 2 0 1 1 -1

f 'TT'ﬁ'TfH(Z)H(z)ZdZ 319
where EO quantization level

F" H(z) = filter transfer function.
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In general the output noise variance is proportional to the gain of the filter and

inversely proportional to E, the distance of the filter poles from the unit circle, e.g.

2
E K )
2 o
% T (3.19

The output noise for certain filters can also be shown to be dependent on the

resonant angle of 8 = ® T of the filter [2] e.g.,

= ——— (3.15)
12E sin” @ '

From this equation, it can be seen that a low frequency filter (@, & 0) can have three

or four more bits of noise standard deviation than a larger resonant angle implementation

of the came filter. Thus, when irying to maintain a specified signal to noise ratio on

the cutput, one might want to think about increasing T to increase the resonar: angle

er. Root locus techniques can be applied to analyze the filter pole zero migration

as a function of sampling period 1.

Computer Arithmetic Requirements

The precision of arithmetic operations is related to the machine intemal data word
length and the method utilized by the computer to perform arithmetic calculations.
The basic structure of a computer data word is shown in Figure 3.1.2. The first bit
of the data word is the sign bit which is normally O for positive numbers and 1 for
negative numbers. This leaves n-l other bits to specify the number in binary form,
When the decimal point for all calculations is assured to be between the sign and
the first bit and the remainder of the data word is considered as a single fractional
number, this is a fixed point data word format. A fixed point data word has the

following fixed dynamic range:
/27 cRel-1/2n (3.16)

Fixed point arithmetic utilizes the full wordlength but has the inherent problem of
scaling quantities to remain within this fixed dynamic range. For example, in a high

gain filter implementation using fixed point arithmetic,the input signal must be scaled

60
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down to prevent overflow, Therefore, the signul to noise performance of this filter is
adversely affected, To get around this dynamic range problem, floating point arith-
metic is typically used. In floating point, the data word i: segme.:.tized such ‘hat

part or the word is the so-called normalized fraction of the number while the other
port is the exponent. The normalization process involves shifting the conients of a
register left until the conten!s of the registers sign bit and the contents of bit posirion
one are not equal where vacated bit positions are filled with zeros. Noimalizing causes
the original fixed point number to be shifted into the most significant bit positions of
the dota word and also maintains a count on the number of left shifts. A floating
point data word is shown in Figure 3.1.3 where the normalized fraction is stored in
the frccﬁonai part of the word and the number of left shift is stored in the exponential

section, A general flc.ting point number is thus given by

N = F x 250 - (3.17)

The arithmetic on most flight type computers is performed on hardware thai is capable

of performing only fixed point arithmetic., The reazons for using these types of machiies
are faster computational speed, increased reliability and cheaper cost. Therefore, it

is necessary to perform some sort of scaling on the filter input, coefficients, and
sometimes even internal state variables tc not only prevent overflow but to alsv main-
tain maximum arithmetic precision. The type of scaling used to implement a given
filter can effect filter performance in terms of signal to noise ratio, This error souice
for uncorrelated input signals can be considered similar to multipli.ation roundoff noise

for analysis purposes. [21]

0 1 23 4 n-3n=2n-1 n

_J 2”274 2
Ss'agrn L Binary Point (Fixed Point Arithm~tic)

FIGURE 3.1.2: Computer Data Word Schematic

61
D180-18438-1

DC 6237 2'4% ORIG a/M

D a0 O A 5533 ot .- D e

o s




e BVDEING conrnrv

Sign —-I '
l% FRACTIONAL  * ° + | EXPONENT

T‘-T-Ii LTL 1 1 1 ln-]l -

Binary
Point -
FIGURE 3.1.3: Floating Point Data Word Format

Arithmetic Noise (Uncorrelated Input)

The primary sources of computation noise in o digital filter are due to multiplication
roundoff noise. Similar to the error model for A/D truncation, these error sources

can be modelled by noise with the following variance:

o = R (3.18)

These noise sources are placed in the filter state variable diagram after scaling
operations and multiplications. For example, consider the state variable diagram for

the second order difference equation given below (see Figure 3.1.4):

N -1 N -2
a5 * 9% a.z

D(z) =
1+ b]z_T+b X

(3.19)

Z

2

This filter is seen to have 3 multiplications going into the first summer and three
mul tiplications going into the second summer. The output noise variance for these

multiplications is as follows:

E2
o

N, = S (3+ _2"_31_ f B(z) Dz} 2! dz) (3.20)

This noise variance can be considered as additive to the noise variance of the A/D
truncation giving a total noise variance for the combination of A/D truncation and

arithmetic roundoff.
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FIGURE 3.1.4: Scaled State Variable Diagram for D](z)

It is very difficult to give general ground rules for the best method of implementing
digital filters in terms of state variable programming form and scaling technique. Most
work to date has shown that the parallel state variable form gives good performance
results for a wide class of filter implementations. But there are even variations in
the performance of parallel filters depending upon the scaling method. Thus, the
question arises as to why the cascade form is considered at all. The primary reason
for considering it is that the various filter blocks can be changed without affecting all
the coefficients for the total filter as happens when dealing with parallel filters. Also
by choosing the proper state variable form, combining the proper poles and zeros in
the respective blocks and then cascading the blocks correctly, performance comparable
to and sometimes bettar than the parallel form can be derived. It might also be men-
tioned that although coefficient quantization problems dictate breaking filters into first
order elements for real poles and zeros and second order elements for complex poles
and zeros, the computer software can be simplified by utilizing a second order filter

as the basic building block in either the parallel or cascade form.

The only general .esults in the literature are due to Jackson 1211 whe considers the
canonic second order form (See Figure 2.4) and its transpose and looks at the per-~
formance of this form for both parallel and cascade implementation. He finds that
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filter performance is dependent upon the type of scaling used (either max value or
RMS) and state variable form. He also shows that the implementation scheme is
dependent upon the measure of signal to noise performance. E.g., ifone is trying
to minimize the output noise variance (total average power) or the maximum value

of the output noise, different implementation schemes would be required.

Summary of Machine Requirements/Synthesis Approach Trades

As pointed out in Section 2.1, the synthesis approach directly affects the machine
requirements. For example, a high sampling rate synchronously sampled system will
require much more computer capability than a slow sampling rate version of the same
filter. In applications with wideband frequency response requirements, the computer
requirements can often be reduced by going to a multirate realization. The multirate
implementation could have a fast update rate front end to prevent folding and to meet
the high frequency requirements, e.g. body bending Ffilters. The low frequency filter
requirements, e.g. rigid mode shaping filters, could be realized at o lower sampling
rate which reduced the arithmetic and coefficient quantization problems. Besides
giving better performance, a multirate filter can also free up computation time as not

all the computations are performed every cycle.

How the filters are split in terms of computation rate is usually obvious from con~
sidering the respective filter bandwidth requirements. In wideband shaping filter ap~
plications, it is sometimes necessary to combine any free lag filters with the fast up-
date rate filters as problems can arise meeting shaping requirements at frequencies
greater than the break frequency of the lag filter due to the notching characteristics

of digitized lag filters.

3.2 Computer Wordlength Study for Low Q Data

The computer wordlength study was run using the low Q multirate system design pre-
sented in Section 2.0. Four frequency responses were made using wordlengths of

39, 24, 16 and 8 bits, The scaled direct canonic state variable form was used in

modeling the rigid and body bending mode filters as it was in the original multirate
design. A block diagram of this state variable form was shown in Figure 2.6.4. In

each run the scaled coefficients were calculated, then truncated. The results of each
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addition and subtraction were truncated as well as the result. of each multiplication.
Before storage, each state variable wos truncated. In all four runs the A/D and D/A

wordlengths were respectively 14 and 15 bits, including the sign bit,

In Table 3.1 the results of the computer wordlength study are shown for frequencies
between 0.5 radians per second and 18 radians per secon . The results show little
phase and gain differences among the 39, 24 and 16 bit runs. This is not surprising.
The poles for the rigid mode filter were shown, in Subsection 2.5, to be at z = +.502
and z = +0.3153 and the two zeros at z = =1. For the body bending mode filter the
poles were placed at z = 0.3 +j 0.519 and the zeros at z = 0.4 £ .85. In each case
the poles and zeros are well removed from the z = +1 region. This is the region of
the rigid mode dynamics. The farther removed the compensation poles and zeros are
from the unit cicle encompassed by this region the less sensitive the rigid mode dyna-
mics become to trunca‘ion error. Therefore a computer wordlength of 16 bits would
accurately represent the low Q multirate design. A small computer wordlength could
also be used to represent the low Q synchronous design. In the synchronous design
tor T = 0,08 seconds the rigid body compensation poles are the same as those for the
multirate design. The complex poles and zeros for this design are respectively at

z = -0.4738 #j 0.6446 and z = -0.583 +j 0.750. These complex poles and zeros are
further removed from the z = +] region than the corresponding poles and zeros in the
multirate design. For the synchronous design at T = 0.04 seconds the complex poles
are at z = 0.35 £j 0.487 and the rigid body compensation poles are at z = +0.7221
and z = +0,60679. These poles are well removed from *he z = +1 region. Therefore
a computer with small wordlength could also represent * . Q synchronous design

without affecting filter sensitivity.

As stated in Subsection 2.5 the low Q multirate design has no distinct advantage over
the single rate design. This is not surprising. One advantage that can be gained by
going to a multirate system is when the design must meet wideband frequency response
requirements, The fast update rate is used to prevent folding and to meet the high
frequency requirements. The slow update rate is used for the low frequency require-
ments and the arithmetic and coefficient quantization problems. In the low Q system
design there are no arithmetic and coefficient quaniization problems with either sampling
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TABLE 3.1: Effects of Computer Wordlength on the Low Q
Multirate Frequency Response

39 BITS 24 BITS 16 BITS 8 BITS
db Phase db Phase db Phase db Phase
14,1 199° 14,1 199° 14,1 199° 11.03 204.9°
-3.8 209° -3.8 209° -3.86 209° -4.,82 210.2°
9,49 188° -9.47 190° 5.49 189°
~11.6 161° ~11.6 162° -11.4 161 .5°
=-11.5 137° ~11.54 140° ~11.54 140°

8.75 114° -8.85 11¢° -8.86 116°
+14,82 318° 16,28 337° 13,97 3%°
-17 247° -16.8 252° -16.8 252°
-27.7 223° ~27.21  224,2° | -27.23 218.4°

~32.25 187.8°{ -36.6 189.8° 1 -36.61 184.9°
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rate ard all frequency response requirements can be met ot T=0,04 seconds or
T = 0.08 seconds. There is folding for T = 0.08 seconds. The fourth body bending
pole does fold into the primary strip but it folds near the second and third body

bending poles. Here it becomes an advantage instead of o disadvantage in designing

body bending compensation,

3.3 Machine Requirements

The machine requirements to implement the rigid and body bending mode filters for
the synchronously sampled system are discussed in this scctiza.  Using the Teledyne
TDY-214 minicomputer and accompanying instruction set, both filters can be realized
with 47 core locations. A complete list of storage requirements, broken down into
instruction total, temporary data storage, constants, variable data storage, multipliers,

adds, loads, stores and transfers are shown in Figure 3.3.1.

26 Instructions
1 Temporary Storage Location
12 Constants
_8 Variables
47 Total Storage Requirements

Average Execution
Time/lInstruction

12 Additions 7 /2 sec
12 Loads 62/3 sec
11 Store Accumulctor 6 2/3 sec
2 Transfers 6 2/3 sec
15 Multiplications 31 sec

FIGURE 3.3.1: Moachine Requirements for Filter Implementation
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The filter rea'ized with the 47 core locations is the digital autopilot for the rigid

and body bending modes sampled at T = 0.08 seconds. The filter is shown below

0.34237 (z+1) 0.248905 (z+1) 0.5721922 + 0.66374z +0.51434

z-0.315261 7 -0.502190 22 +0.947582 + 0.64

The state variables are defined as follows:

XI(k+1) = +0.315261 X1(k) + [0.342370 + 0.315261 (0.34237)] INPUT(K)
OUTI(k) = X1{k) + 0.34237 INPUT(k)

X2(k+1) = 0.502190 XZk) + [0.248905 + 0.502190 (0.248905)] OUTI(k)
OUT2(k) = X2AK) + 0.243905 OUTI(k)

XX k+1) = -0.94758 X3(k) + X4(k) + [0.66374 - 0.94758 (0.57219)] OUT2(k)

Xd(k+1) .= -0.64 X4K) + [0.51434 - 0.64 (0.57219)] OUT2(k)
OUT3(k) = X3(k) + 0.57219 OUT2(k)

The instruction set for the TDY-214 is of the single address type and has the following
format:

[INSTRUCTION | TAG ADDRESS

]
ojif2fafalsleizl T T ) VLV T LT 19

The tag field is iwo bits in leagth and indicctes which index register, if any, will
modify the address portion of the instruction. For implementing the rigid and body
bending mode filters only one of the three index registers is used as well as just one
of the two accumulators available with the TDY-214. The assembly language program
is shown below,

FILTER COMPUTATION PROGRAM

(X) means contents of address X

Location Inst.  Tag. Address ' i

01145 LDX 1 1200 Load index register 1 with (1200)
01146 LDU 1 1205 Load upper accumulator with (1205 +(index register 1))
0l147 MPY 1 1202 Multiply (upper accumulator) by (1202 ™ (index

register 1))
01150 ADD 1 1206 Add to (upper accumulator) (1206 + (inde- register 1))

01151 STU 1 1201 Store contents of upper accumulator in 1201 + ‘
(index register 1)

01152 LDU 1 1215 Load upper accumulator with (1215 + (index register 1)’

01153 MPY ] 1205 Multiply (upper accumulator) by (1205 +(index ‘

register 1))
01154 ADD 1 1221 Add to (upper accumulator) (1221 + (index register 1))
MI55  MPY 1 1202 Multiply (upper accumulator) by (1202 +(index '
register 1))
01155 STU 1177 Store contents of (upper accumulator) in 1177
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FILTER COMPUTATION PRO GRAM (Continued)

Location Inet. Ti.g Address

01157 LbU 1 1215 Load upper accumulator with (1215 + (index
register 1))
01160 MPY 1 1211 Multiply (upper accumulator) by (1211 + (index
register 1))
01161 ADD 1 1177 Add to (upper accumulator) (1177 + (index register 1))
01162 STU 1 1211 Store contents of upper accumulator in 1211 +
(index register 1)
01143 TRX 1 1146 If (index register 1) # J, decrement contents of

index register by on= and transfer control to
location 1146, |If (index register 1) =0
continue to next instruction

0l164 Lbu 1214 Load upper ar.cumulator with (1214)
ul165 MPY 1205 Multiply (upper accumulator) by (1205)
01166 ADD 1220 Add to (upper accumulator) the (1220)
01167 MPY 1201 Multiply (upper accumulator) by (1201)
01170 STU 177 Store contents of upper accumulator in 1177
onz LbU 121A Load upper accumulator with (1214)
01172 MPY 1210 Multiply (upper accumulator) by (1210)
onzs ADD 1177 Add to (upper accumulator) the (1177)
01174 ADD 1211 Add to (upper accumulator) the (1211)
01175 STU 1210 Store (upper accumulator) in 1210
01176 TRI XXXX  Transfer back to main program

01177 Temporary data location

01200 2y stored here

01201 Storage location for OUT3

01202 Storage location for OUT2

01203 Storage location for OUTI

01204 Storage location for the input

01205 0.57219]0 stored here
01206 0.2489051( stored here

01207 0.342370y( stored here
01210 Storage location for X3(k)
o12n Storage location for X4(k)
01212 Storage location for X2(k)
01213 Storage location for X1(k)
01214 -0.‘;’4758]0 stored here
01215 -0.64]0 stored here

01216 0.502190|o stored here
01217 0.31526110 stored here
01220 0.663741¢ stored here

01221 0.51434|o stored here
01222 0.248905]0 stored here
01223 0.342370; ) stored here
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4,0 MULTIRATE SAMPLED DATA ANALYSIS METHODS

In the literature there are two major approaches to analyzing multiloop, multirate
sampled data systems. The first approach was proposed by G. M. Kranc (111, It
involves replacing each sampler, T/N, by an equivalent configuration of advance and
delay elements sampled at a single rate, T. This allows the already developed trans-
form method of analysis for single rate systems to be applied to multirate systems.

The second approach is the state transition method introduced by Kalman and Bertram

[3]. Defining state variables for the continuous and digital elements as well as for
the zero order hold elements allows the system to be described by a set of transition
matrices. The multirate analysis is then carried out by manipulating the various trans-
ition matrices. The purpose of this section is to investigate these vo ious approaches
and to choose the most appropriate method for analyzing both synchronous ond multi~

rate sampled data control systems.

4,1 Kranc's Switch Decomposition Method

In Appendix A two ~n~proaches using Kranc's switch decomposition method for analyzing
multiloop, multirate sampled data control systems are presented in detail. The first
approach is Kranc's original method. The method is relatively straight forward but
has the disadvantage of involving a substantial amount of work in separating each of
the branch variables from the governing loop equations. For more complicated systems
which utilize o digital computer for analysis, the amount of work required by the com-
puter to separate the branch variables to form the characteristic equation is greater
than the work required to do the actual system analysis. The second method discussed
is the procedure outlined by Boykin and Frazier {12]. It extends Kranc's technique

by introducing a vector notation for the advance and delay elements as well as a set
of identities needed to convert the re;ulting vector/matrix equations to scalar equations.
The procedure simplifies Kranc's original technique by allowing the governing loop
equations to be easily written down by inspection of the signal flow graph. It offers

little help, however, in separating the branch variables from the governing loop

equations. 70
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An extension to Kranc's switch decomposition method which partially reduces the
problem of separating the branch variables from the loop equations is the method
developed by Thomas C. Coffey and lvan J. Williams [13]. Their procedure is to
opproach the switch decomposition method in the frequency-domain. By incorporating
appropriate shifts in the s-domain terms and by judiciously choosing the branch variables,
Coffey and Williams develop an identity which can easily be implemented on a digital
computer. The disadvantage of Coffey and Williams method is that, like Boykin and
Frazier's method, considerable care is needad in applying the identity. Therefore
the analyst needs extensive knowledge of the method or an intricate computer program

for setting up the analysis.

Two relatively recent papers by E. |, Jury [14, 15] have extended Coffey and Williams
switch decomposition method. Jury shows equivalence between the s domain approach
and the z domain as well as the power of complex integration in formulating the z
transform. Jury's contribuiion allows Coffey and Williams method to be worked in the

z-domain but it too fails to reduce the computer implementation problem.

All three switch decomposition methods have one common advantage and ¢ne common
disadvantage . From a block diagram or signal flow graph point of viev: the problem

is straight forward and easy to understand. The disadvantage is in the degree of
sophistication needed to implement the various techniques. For this reason, and for

the relative simplicity in understanding and in implementing the state variable approach,
Kranc's switch decomposition method was dropped as a tool for analyzing multirate
sample data control systems. The remainder of this section is devoted to developing

the state variable approach as an anclytic technique for synchronous and multirate

systems,

4,2 State Variable Approach to Multirate Sampled Data System Analysis

The application of state variable techniques to multirate systems was first proposed by
Kalman and Bertram (3], By using the concept of state and transition matrix, it is
possible to analyze both synchronous and multircte systems within the same generc!
framework . The state approach also overcomes a serious difficulty of transform methods
by giving time response informaticn at all times and not just at sampling instants. This
approach is also easily implemented on a digital computer.
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A typical linear sampled data control system block diagram is shown in Figure 4.2.1,
From this diagram it can be seen that the sampled system contains the following types
of dynamic elements: continuous dynamic elements, discrete dynamic elements and
sample and hold dynamic elements. The dynamics of these various elements can be
described by state variable relationships. The state of a dynamic element can loosely
be defined as the minimum amount of information, e.g., an nx1 array of numbers,
which is necessary to calculate the future behavior of the dynamic element when one

knows the input/output relationship for the element and the input to the eicinent.

4.3 States of Linear Sampled Data Systems

A linear sampled data system typ :ally contains the following three types of state

variables:

1. Continuous state varigbles - The continuous dynamic elements are described by
ordinary linear differential equations with constant coefficients. The state var-
iables are defined as the outputs of the integrators thot appear in the state

variable (first order) representation of the differential equation.

2. Discrete state variaoles - The discrete state variables are governed by linear
difference equations. These equations are idealized representations of the com-
putations that are performed in a digital computer. The computer actions necessary
to implement these equations involve performing arithmetic operations on sampled
input signals and stored data, storing the data necessary for the next round of
computations and placing the output in a register or storage location where a
D/A device has access to it. The state variables for the discrete dynamic
elements are the numbers that must be stored in order to perform the next round
of computations. These states get updated only during a computation and remain
constant until the next computation involving these states. The state variables
are defined os the outputs of the delay elements that appear in the state diagram

representation of the difference equations.

3. Sample and Hold State Variables - The sample and hold element represents, in

on idealized sense, the operation of sampling various types of ‘nformation and
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then applying this information through a smoothing filter to the input of a con-
tinuous dynamic element, So basically this element is a discrete~time element
that gefs updated at sampling instants and holds this value until the next sampling

instant. The state of this element is equal to its output.

From the state variable descriptions, it can be seen that the continuous state variables
transition in a continuous fashion while the discrete time and sample hold variables

may be thought of as taking place at the sampling instants only.

+

—1 D(z) P—"-= ZOH G(s)

H(s)

FIGURE 4.2,1: A Linear Sampled Data Control System

The state of the entire system can then be written as the nx1 column vector X
defined as follows:
XC
D

X = X (4.1)

XSH

where XC isa y x 1 column vector of continuous states
XD isa & x 1 column vector of discrete states

XSH isan n =( ¥ +§) column vector of sample and hold states.

4.3 State Transition Equations

The state transitions for the various dynamic elements will now be described. Before
discussing these relationships, it is interesting to look at the time sequence of events
that transpire in a digital cont. | system in an idealized sense. First of all, it is
assumed that the discrete dynamic elements and sample and hold dynaomic elements
that get updated at a sampling instant transition in the time instant he -—..fk+.
Likewise the continuous dynomic elements remain unchanged over this instant but

transition over the finite interval fk+ <t<t e This is shown graphically in
Fi 4,3,1,
gure ”3
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Discrete Dynamic Elements

," Transition _
H Continuous Dynamic Elements |
/7~ Tronsition

A | Y ;
\ + /t
I'k/ he k +1 :

FIGURE 4.3.1: ldealized Time Sequence of Events

Under the assumption that the discrete and sample and hold variables transition
instantaneously these two state variable forms can be combined and the state of the

entire system sirplifies to

C
X
X = (4.2) s

Discrete State Transition

The discrete time states are transitioned by the following relationship:

x;(rk+t)=

Wl

' dij X ('k) + di’ 0t ] r(tk) i=rY+1,...Y+8 (4.3)
j=1
where Tt is the time it tokes the computer to complete the computations. As

stated previously it is usually assumed that the computations are done instantaneously;

+
therefore, the left side of this equation is written as B giving

n
+ .
x () = j2= ] dij x, () +d; Loy (4.9)
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Sample and Hold State Transition

The sampling process is ussumed to take place instantaneously. The state transition

equation for the sample and hold element is thus given by

: n
4+
X (f ) = 2 S.. X, (’) + s, r(t) i=y+8+‘,oo.,fl
itk i:] y J k |.,n+l k (4.5)

System Transition at a Sampling Instont

Unde: the assumption thai the discrete and somple and 'iold elrment: all transition
instantaneously at a sampling instant, equations (4.4) and (4.,5) can be combined into

an overall system transition relationship at @ sampling stant as follows:

x(t,) = B x(h) + Fr(y) 4.8

where 5; Y- b 5 —*-!n-(S*-W"""

006 io”— rowT

Continuous System Transition

The continuous dynamic elements are described by the following first order differential
equation:
= A X+ m (4.7)
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The integral of this equation gives the state transition relationship for the continuous

dynamic e’elicnts and is given below.

) r .
x° .('.‘k +1) = g° () % ('k) + j‘ gt-o) m (¢) do (4.8)
"
where t = Lt

In order to simplify the expressions that follow, it is convenient to assume the inputs
to the cont! Jous dynomic elements are from only sample and hold elements. Since
these inputs ure constant between sampling instants, the fallowing closed form ex-

pression ccn be written for the integral:

[4 . -
f x (VB -a) fdo x (1Y bl () (4.9)
t
k

Therefore, the state tramsition equation {in component form) for the continuous dynamic

elements is given by

2

: 14
()= 30 056 K () X bl x (N i=1,2,..07 410
=1 i=y+6+1

0< v =My ~h

System Transition Between Sampling Instants

Tie total system transition relationship between sampling instants can be written as

foll sws:
+
x (V= $ (T x (h) (4.11)
* .
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where l
1 [ro 19w ]
%“k” il _O_q__I__C_)_--
] O O Ii Iy
x(nh = <)
xo.(t,‘*)_1

Stability of Synchronously Sampled Systems

The stobility of synchronously sampled systems can be analyzed by using equations (4.6)
and (4.11). The complete state transition from time n T to time (n+1) T is given oy

| <@ =M @ x (M~ F e
| S VM XD +h(D (D) (4.12
1 where

v = Pme

l h = émf

i Toking the z-transform of this expression and rearranging gives

-1 -1
| - xa) = [zI -w)] z x(0) + [:I-wm] h(T) Rz)  (4.13)

The characteristic equation for this system is therefore given by

det | z| -ym| =0

I (4.14)
. 77
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These results are summarized in the following theorem [3]:

Theorem !. A stationary linear system is stable if all n zeros, z. of the polynomial
l z I -|IJ(T)' satisfy

'z.l <1
i

fori=1,2, ..., n.

These results are € ;uivalent to the results using z-transform theory. That this is the
case will be demonstr.ted by working an example problem by both z-transform and

state variable methods.

Example 4.1
Consider the sampled data control system shown in Figure 4.3.2. Taking the z-trans-

form of this system gives the following results:

Glz) =z ! 'e.ST = Z(T‘]*'G_T)*(] —Te-r-e-T)
R (-1 (z-¢) 4.13)

The open loop frequency respomse for this system can be evaluated by plotting the
system poles and zeros in the z-plane and evaluating the magnitude and phase from
these singularities to points on the unit circle. The root locus for this system can

jikewise be ascertained.

Example 4.2

Consider again the system shown in Figure 4.3.2. The state variable diagram for this
system is shown in Figure 4,3.3. From this figure the state equations for the dynamic
elements are given by

e T +x2

)22 = x3 (4.16)
%y = 0
end the state t-a-ition relationship at a sampling instant is
xg (0T) = £ (aT) = kxy (n) | (4.17)
78 .
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The A and B matrices for this system are as follows:

-1 1 0 1 0o o
A=l o0 o 11; 8=( 0 ] 0 41
0 0 0 -k 0 0 (4.18)

Evaluating the relationships

s fa-a)

or just numerically integrating the equation X = AX over a sampling period, the
transition matrix HT) is

e—l l-e_T T-1+ e-T '
g = 0 ] T (4.19)

0 0 1

The system transition matrix ¢ (T) is therefore as follows:

e--T - k(T-1+ e-T) 17T 0
em=¢ ms= | | 0 (4.20)
« 0 0

The characteristic equation then becomes

2T -9 =2z’ + ((T-1+eT) 2 =Nz +e (14 (41))+K)  (4.2)

The open loop poles* for this system can be found by evaluating the charccteristic
equation at k = 0 giving :

z (z-1) (z-e) . (4.22)

The open locp zeros for the system can be determined by subtracting the characteristic
equation with k = 0 from the characteristic equation with k = 1 giving

zf(T-1+e ) + (1 =T el - ey (4.23)

Thus, the system transfer function is given as shown below:

2(T-1+e ) + (1-Te =&Y
2 (z-1) (z-e )

- W e a3 W - e e e B e e =

* These results are based upon the assumption that the system transfer function is of

(4.24)

the form:
C . kG) - k N(2)
L3 +k azs D]zi + ENiz)
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This transfer function is seen to be equal to the results as derived from z~transform
theory. The root locus for this system can be found by solving the characteristic
equation (4.21) ot difference values of k. Likewise, the frequency response can also

be evaluated for this system,

The presented simple example gives the impression that the state space approach leads
to a more complicated solution than analysis by the classical methods. This might be
the case for this simple example except that a computer implementation of the clas-
sical approach would require partial fraction expanding the function G(s) and then
possibly doing a table look up of stored z-transforms. It is then necessary to re-
combine the z-transforms to get the transfer function. The state space approach is
seen to involve matrix manilupations which can be readily carried out on digital
computers. More will be said in the next sectior concerning the general applicabil ity
of state transition approach techniques to the analysis of more complex systems. It
might also be mentioned that the state fransition approach also leads quite readily to
optimal synthesis and to the concepts of controllability and observability for discrete

and continuous time systems.

4,4  Extending the State Transition Technique to More Complex Systems

Theorem 1 has been shown to be idertical to z-transform results that require the system
closed loop poles to lie within the unit circle in the z-plane for stability. The use
of z~transform techniques has been limited to studying synchronously sampled systems .
Modifications and extensions have been proposed to the z-transform but these results
have been shown to be cumbersome to apply and not applicable to a wide class of
problems. The state space approach of Kalman and Bertrara can be applied to a

much broader spectrum of sampled data problems. Also, for problems where a staiionary
transition matrix can be defined, Theorem 1 is opplicable with the cppropriare‘iy de-
fined ¢ . It has been pointed out in Reference [3] that a stationary transition matrix
can be obtained whenever the sampling operations repeat in a periodic fashion. Some

sample cases where stationary transition matrices arise will now be reviewed.

Cyclic Variable Rate Sampling

The sampling operation in a cyclic variable rate system could be assumed to follow a
pattern as shown in Figure 4.4,1, The somples are synchronous but the rate is seen to

vary in a fixed cyclic manner.
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“he transition matrix for this system will be stationary if a basic sampling period of

one second is considered. For the simple system shown schematically in Figure 4.4,2

the stationary transition matrix would be computed as follows:

First, define the relationships

% = AX (4.25)
x () = 8 x(t) ' (4.26)

Second, solve equation (4.25) for ¢(Ti) and then use the B matrix to define the

following stationary transition matrix (see Figure 4.4.3),

(= g(4H8 g(.28 F(.48 (4.27)
The characteristic equation for this system is given by

det {2z I - ¥ (1) =0 (4.28)

and it is thus possible to conduct both frequency response,root locus and time response

analysis of this type system,

Multirate Sampled Data System Design

A multirate sampled data system is assumed to have more than one sampler where the
sompliﬁg process could be as shown in Figure 4.4.4, Multirate systems wiii eahibit

a stationary transition matrix whenever the samplers act synchronously in a cyclic
manner. This will be the case whenever the ratio of the various sampling periods

is rational. For example, for the samplers in Figure 4,4.5 the period T for which all
the samples act synchronously is T = 1 second. In general, the shortest period for a

stationary transition matrix is given by
Ti/Tj =, ' where p and q are relativeiy prime integers.
The sampling patterns have a least common period given by

T=Tiq=ij
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When Ti/T‘ is irrational, it is impossible to write a stationary transition matrix. If
p and q are large integers then almost the same situation arises as it takes a very

large number of intervals to define the overall stationary transition matrix.

For multirate systems where it is possible to define a stationary tronsition matrix,
the analysis proceeds as for the other types of systems analyzed. For the system con~
sidered in Figure 4.4.4, the operations that must be performed to define the matrix

(T) are as follows (see Figure 4.4.5):
w(1) = 1/6) B, K1/6) B, B(1/6) B, B(1/6) B, K1/6) b, A(1/6) B (4.28q)
whaere the B matrices are given by

= discrete transition matrix when all samplers are acting synchronously

B, = discrete transition matrix when sampler with T = 1/6 is acting

1/6 and T = 1/3 are acting
1/6 and T = 1/2 are acting

and H(1/6) is the continuous transition relationship evaluated for t = 1/6 sec.

B, = discrete transition matrix when samplers with T

83 = discrete transition matrix when samplers with T

Using the ¢ (T) defined by equation (4.28a), system stabilit, can be analyzed by
applying Theorem 1. Thus, the characteristic equation for this system would be given
by

zI - ¢ (D) 0

Some example solutions using the state transition approach developed in this section
will now be compared with the solution technique of Kranc for the system shown in

Figure 4.4.6,

State Transition Solution

The state relationship for this system between sampling instants is as follows from

inspecting Figure 4.4.6,

% o=
Xy = %y (4.29)
iy = O
x, =0
85.
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or in matrix form

% = Ax (4.30)
where
(0 0 1 0
A= |00 01 (4.31)
0 0 0
0 0 0 0]

The state transition relationship when both samplers act synchronously is given by

x (7T,) =B x (n T) (4.32)
where -
(1 0 0 0O
10
B = o 1 0 o (4.33)
1 0 0 o0

Likewise, the state transition relationship when only the fast sampler is acting is

described by

x (nT:+) = Bl < (nTi) (4.34)
where i -
1 0 0
B' - o 1 0 o0 (4.35)
¢ 0 1 0
1 0 O 0d

The iwo B matrices are seen to differ only in the third row,

Using the relationship
g Qa/N) = ! [s I-A]'I T/N. (4.36)

or just numerically integrating equation (4.30) over a perioc T/N, @ (T/N) is found

to be as follows:
86
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[ o TN 0]
] c T/N
g am) = o 1 o 4.3
0o 0 1

For this example, assume that N = 2, The stationary transition matrix for this

situation involves the transition shown in Figure 4.4.7 which is as follows:
T T
vm=9(x) 88 (3 8 (4.38)

Performing these matrix multiplications, gives the following ¢ (1):

o h

1 -T ) 0 .

2
T 1- Tz 0 0
(T = (4.39)
0 -l 0 0

—

-1/2 0 0 ]

o

The characteristic equation is given by det l z I1-¢ I = 0 and using (4.39) this

relationship is as follows:

2
z2 [22+(%--2)z+]+% T2] =0 (4.40)

Kranc's Time Domain Sampler Decomposition Solution

It is instructive to rework the example of Figure 4.4.6 using Kranc's technique. For
N = 2, the fast sampler must be replaced with two paralle! samplers acting at the
slower rate but with appropriate time shifts in their channels so that the sum of the
two is equivalent to the single fast saripler. The equivalent system is shown in

Figure 4.4.8,
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The blocks labelled G(s) and H(s) rep-2sent the combination of the zero order
holds and the original transfer functions and are dafined as follows:

G = — (4.41)

HE) = —— (4.42)

From Figure 4.4.8 the system transfer function in the z-domain can be written as

c) . Stz)
Rz 1+ 6(2) Hz) +Z [e

where the characteristic equction is found by equating the dencminator of this
expression to zero.

172 [e-sT/Z N (s)] (4,43)

G(s)] y4

The z-transforms of the varicus terms in equation (4,43} c.> ¢iven below:

o) = -

N
‘o
4,
N
=
.
—
)
Nl—
'

Plugging these expressions into the dencminator of (4,43}, the churacteristic equation
for this svstem hecomes:

2 ¢ 5
22+(;--2) z+ 1+ .i»T" =0 (4,44)

This equation is seen to equal ~juation (4,40) (the state transition derived characteristic
equation) except for the two exira zeros in (4,40). Tnese exira zeros resuit from the

discrete states x,, and :., and correspond to tr ‘wo z=:0 columns i the matrix ¢ (T).
Based upoa the Fact that 1/ (T) is being used tc define the stationarv tiznsition reloiion-

ship
x{((k+1)T)= () x (kT) + K(T) v (kT) (4.45)

...... 39
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The zero columns of ¢ (T) imply that the states X3 and x 4 need not be known at the
k’h sampling instant in order to find the state vector ot the (k + 1)“ sampling instant
(3). Thus, Xq and » + can be dropped from (4.45) and the evaluation of the deter-
minant for the characteristic equation can be greatly simplified by reducing the order
of the matrix - lz I -¢| « It must be pointed out that ¥ (T) could not have ex-
pressed as a simple product of matrices if x5 and x 4 had bee: dropped before obtaining
the final result. Therefore, only after ¢(T) has been computed can simplifications be

made .

4.5 Multirate Sampled Data Analysis Methods

The following technique< were considered for analyzing multirate sompled data control

systems:

1) Time-domain switch decomposition method of Kranc [11},

2) Vector operator signal flow graph technique of Boykin, Frazier, et ol [12].
3) Frequency domain approach of Coffey and Williams [131.

4) Z-plane technique of Jury [15].

3) State variable approach of Kalman and Bertram [3].

The state transition approach of Kalman and Bertram was found to be the method with
the most general applicability and was also found to be amenable to digital computer

. solution.

It was demonstrated for systems described by stationary difference equations that the

characteristic equation is given by the following expression:

zl -«[l(Tk) =0

L
where ¢ (T)) = n# (18,
i=1
g (Ti) = Transition relationship between sampling instants

B, = Transition relationship at a sampling instant
L

Tk = X Ti the shortest period for a stationary transition equation.
i=1 -
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A stationary multirate system is stable if the n zeros of the characteristic equation

are less than one i.e., l z, ,< 1.

If a system is nonstationary, the previous expression no longer holds and one is

i» { . forced to return to the basic definition of stability to analyze these systems. That
- is, astable system will have bounded outputs for all bounded inputs. Applying this
{ ) definition of stability to nonstationary sampled data control systems implies that the
product of the transition matrices opproaches zero as the number of products gets
T large. This can be formalized as follows:
P v(T) ¢(@) ... |/:(TN) —0a N —

From a control system designer’s standpoint, this approach to stability is not ver
ys g P PP Y Y

ST ot

i enlightening as it says nothing of relative stability.
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5.0 MULTIRATE ADAPTIVE CONTROL SYSTEM TECHNIQUES

This section discusses the results of a literature search, and study of adaptive control
schemes that appear applicable to space shuttle. Gibson [31] has shown the classical
adaptive control problem to be separable into (a) parameter identification, (b) state
estimation, (c) control. The parameter identification task is by far the most difficult -

- problem to solve; therefore, it will be emphasized in the work that follows.

5.1  Online Technique of Lobbia and Saridis
The first technique to be discussed is due to Lobbia and Saridis [7]1. The, consider

the problem of online identification and control of a stochastic process that can be
expressed as a linear model with unknown parameter coefficients. This adaptive con-
trol system minimizes a quadratic performance criteria in an asymptotic sense. Figure
5.1.1 shows a block diagram of this controller. The system is required to be: (a) linear,
(b) time invariant, and (c) closed loop stable, and is assumed to be completely con~
trollable and observable. The disturbances are assumed to be independent and Gaussian
with zero mean. A known Gaussian sequence with zero mean is added to the control

sequence to act as a system probe to facilitate identification.

For the n-dimensional system, and r-dimensional observation, the input-output in-
formation is used to define "auxiliary" vectors. These (gr)-dimensional (g < 2n)

vectors contain information necessary for a new system parameter estimate:

8 = (53) contain information on current parameter estimates (gr x gr)
Al = [hTs, hoTAB, ..., h2A" 8 ]
i i ol i oo i o o

k+g-1 T T
vector of gr known input noise samples.

v, kel :J (ktg=1, u' (k+g=2), ..., uT(k)] (gr x 1)
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y (k)

o FEEDBACK CONTRO LLER

-

MATRIX
TRANSFORMATION
~TA
te;

W,

IDENTIFIER €

N

SYSTEM DESCRIPTION:

S(kt) =As(k) + B u(k) + y(K +Dw{k) (mxl)
z (k) = Hs (k) + v (k) ' (mx1)
u (k) = CONTROLLER (rx1)

-] -1
A, =PAP™, B, =P8, Hg=HP

FIGURE 5,.1.1: SELF-ORGANIZING CONTROLLER IN CANONICAL FORM
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Assuming that the sysfem is controlled in a stable manner, then the above vectors

provide a new estimate of the system parameters as indicated in Figure 5.1.2. This

figure also illustrates the computational sequence of the identification algorithm.

The heart of the algorithm is the ireration sequence indicated in Figure 5.1.3.

Possible Problems

This identification algorithm presents the following questions:

(1) Would parameter estimation algorithm converge for a non=stationary system,
i.e. the formulation only provides for the "asymptotic" convergence of a

quadratic cost function based on a linear, stationary system.

() Would the identification algorithm converge if the true system is nonlinear
i.e. would the estimation algorithm converge to a finite dimensional linear-

mode! equivalent to the nonlinear system.

(3) If the estimation algorithm is constrained to some n-dimensional linear
system, and if the actual linear system is of dimention n > n would in this
case (a) the algorithm attempt to estimate the “"dominant" system dynamics

(b) would the algorithm be stable.

(4) The impact of practical computer storage and computation time limitations is

unknown.

Any real-world problem is to some extent non-stationary and nonlinear. Computer
limitations dictate limiting system models (and associated calculations) to significantly
smaller dimensions than the best estimate of the actual system (i.e. space shuttle

equations).
Due to the above potential problems, a high technical risk is assigned to the

implementation of the identification algorithm as given.

5.2  Maximum Likelihood Method of Stepner and Mehra

Before a practical autopilot can be designed much preliminary data on aircraft stability

and control derivatives must be derived. This suggests some sort of off-line identi-
fication algorithm [16]. A satisfactory solution of the off-line identification problem
can siynificantly simplify the adaptive autopilot problem, by:
94
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(a) establishing relationships betweer sensed data and key stability parameters,

(b) simplifying the gereral mode! by indicating the dominant dynamics.

For example, off-line analysis [16] may indicate that explicit on-line parameter iden-

tification is not necessary for a successful autopilot implementation. Hence, we are

led to a review of the off-line parameter identification algorithms of Stepner and

Mehrg [eél.

Reference [16] discusses the application of a generalize identification method for
Flight Test Data Analysis. The method is based on the Maximum Likelihood (ML)

criterion and includes output error and equation error methods as special cases.

The development of the Generalized Maximum Likelihood (ML) Method for Aircraft
Parameter Identification has been motivated by several considerations. First, the
Maximum Likelihood methods are known to provide better estimates than other methods

{20]. Second, ML methods are more general and can handle both measurement and

process noise. In cases where no process noise is present, and the covariance of the

measurement noise is known, ML methods reduce to the Qutput Error Method [17, 18].
Similarly, in coses where no measurement noise is present, the ML Method reduces to
the Equation Error Method [18, 19]1. Third, ML Methods yield realistic values of the
variances of the parameters. Fourth, ML Methods can be used to estimate the co-
variances of the noises. This eliminates the problem of specifying the weighting matrix

or the covariance of the measurement errors,

Qutline of Algorithm

The maximum likelihood identification method, as implemented by SCI, is indicated

schematically in Figure 5.2.1.

It is assumed that the structure of the system is known. The unknown parameters are
expressed as a vector 8, A maximum likelihood (ML) estimate of @ is desired. A
maximum |ikelihood function is constructed assuming that the constrained model is
near optimal, so that the error between the model output and actual system output is

a gaussian zero mean white noise innovation sequence v ,
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| Adjustable
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' Optimizer

FIGURE 5.2.1: IMPLEMENTATION OF MAXIMUM LIKELIHOOD ESTIMATOR

The ML estimate @ is obtained by maximizing a conditional probability density function,
or minimizing N :
J= g 2 [va 8™ () v + 'ong(i)l]
i=1 (5.1)
where B(j) = H. P HY + &

H = model measurement matrix
P = state error covariance matrix

R = measurement error covarionce motrix.,

Minimizing Equation 5.1 subject to the covariance model constraints is simplifie.” by
a steady state B and Kalman Filter assumption [16]. The problem is consequently
reduced to finding the roots for

N .

The roots of Equation 5.2 are found by a modified Newton-Raphsan algorithm.

This modified Newton-Raphsan algorithm is considered the main advance over previous
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identification algorithms. The key feature is the use of the "information matrix" based

on the innovation sequence sensitivity to parameters:

N

T
M = .Z] (_ga'_) B! _gg- (5.3)
i = |

The parameter update is calculated as follows
T
I Y
Ao -M (_TG_) (5.4)

In conclusion, the Maximum Likelihood method developed by Systems Control, Inc. is
a combination of three steps: [16] Kalman filtering to estimate the states and gererate
a residual or "“innovation" sequence; [10] a modified Newton-Raphson algorithm for the
parameter estimates and [17] an algorithm to estimate the noise statistics (mean and

variances of the measurement and process noise).

Results of Identifying Aircraft Stability and Control Derivatives

Data in three aircraft were analyzed using this algorithm. The three aircraft data
were from:

(a) X-22 VTOL computer simulation

(b) HL-10 lifting body flight data

(c) M2/F3 lifting body flight data

In all 23, 20, and 22 parameters, respectively, were identified. Each identification

task. had its unique problem:, requiring non-standard fix up.

Problems in Identilication

Most of the problems encountered could be related to attempting to identify parumeters
associated with unexcited modes. These problems are called “identifiability” probiems.
For example an inadequate "reference model structure” may force the parameters of the

model to account for some major unmodeled effect.
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~ Errors in instrumentation may result in non-physical parameter values. When control
input is expressible as a linear combination of the A/C response variables, the in-
formation matrix (M) should be computer leaving out one or more of the smallest
eigenvolues, Each eigenvalue which is left out relates to a singular direction in
parameter space and therefore indicates a combination of parameters which can not

be uniquely identified.

Comments

The Maximum Likelihood identification program described in [16] is considered as the
“state of the art." The reported performance is considered exceptional. Neither the
program nor algorithms are available for inspection and verification, i.e., they are
not govemment property. Reference [18] reports on the parameter identification results

and merely describes in general the actual identification program.

5.3  System Identification Techniqi - of Lion

Introduction

The system parameter identification method of Lion [22] summarized here appears suitable
for use in adaptive autopilots [26]. The problem considered is the identification of the
dynamics of a plant where only the input and output can oe observed. Lion's identi-
fication algorithm does this by continuously adjusting the parameters of a model of the
plant so as to null some measure of error (€) between the model and the plant. The
two most widely analyzed error measures are (a) the response error, and (b) the equation
error [25]. The response error system has the advantage that only the i~put and output
of the system need be measured. The equation error, on the other hand, is an alge-
braic function of the parameters, and therefore has the advantage of giving a parameter
adjustment method according to a "steepest descent" law. However, in equation error

systems, all state variables must be measured or generated (estimated). Lion's '

'gen-
eralized equation error" method possesses the advantage of both types; that is (a) only
input and outrut need be measured, and (b) it is an algebraic function of the para-
mefers, therefore allowing a true steepest descent path in narometer space. Global

asymptotic stability for a large class of inputs is proven.
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The development is for o singlc input, single output stationary lineor system, The

system input signal is required to excite all modes associated with the parameters to
be identified. The method [22] is applicable to nonlinear sysiems as long as the

pafaméters to be identified enter linearly; ie: parameter "¢" in Equation (5.5).

; . . .3
S y + a)y = Agy tey =u (3.3)
It is necessary that the form of the nonlinearity be knowna

The usefulness of the identification method [22] in adap "= autopilot design is its
rapid convergence rate. If the parameter variation with time is much slower than

the system time constants, satisfactory parameter identification is obtainable [22, 24, 26].

ST,

Summary of Lion's [22] Parameter Identification Algorithm

P - " Consider the system to be identified represented by the tramsfer function
n-l
. )N
L a9 = NEB o] % ® - ) .4
: s D (s,9) n=l i u(s)
n i-
s + Z ais

Let "u® and "y" be the plunt input and output, respectively. We want areal tir

parameter estimator such that (3, 'B) converges rapidly to (a, b), ie: ai_. a. Bi -

The parameter estimate error requiring only the system input and output is derived as
follows:

N(s,b) Ws) = D(s,a) Y(s) = O (5.7)

o el el (5.8)
L 2Nl RTCI FLRD M ICR T
i=] | !
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If we replace bi ond a, by sotae estimators Y a\i we have a measure of the error in

-

the estimates as follows:

5.9
N (s,ll;) Y(s) - 0(3,3) U(s) - Error ( : 9).

The above N(s, 'Q) and D(s, 8) are not realistic “state variable filters" since they
represent differentiation of y and u, Therefore a low-pass filter, H(s), is introduced

as follows:

H(s) [N(s,ﬁ) Y(s) - D(s,q) U(s)] = Errov (5.10)

Next the polynomials N(s, b) oand D(s, b) are generalized by replacing "s"' by
“independent” polynomials in s.

n-1
A (5.11)
R & New, b & 2 a0

and
n~l
b 2 o) B2 X e &

® o

(5.12)

The polynomials Pi(s) are constrained as follows:
(a) pi(s) are "independent", that is there exists no constants <:ii such
that pi(s) = cii (pi(s) foralli # {.
(b) H(s) pi(s) are "low-pass"
With the infrodiction of the polynomials, pi(s), the correspondence between (ai, bi)

and (ai, ll;i) may no longer be one-to-one. The relationship between (°i' bi) and

(Gi, %i)’ can be derived by comparing coefficients of like powers of "s” in

B(s) = D(s) and N(s) = N(s) (5.13)
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Finally using Equation (5.11) and (5.12) we have the generalized parameter estimation

emor, € .

o [Re us -5 L (5.14)

where H(s) Pi(s) 4 Mi are the "state varicble filters." Next define the following
"stote variables.™

yY; = HE) ps) Y6) = M. Y(s) (5.15)
A - .
LA R (5.16)

Using these definitions Equation (5.14) becomes

e (5.17)
i1 il

Having defined the error € a performance criterion P(€) = 52/2 is selected, The
method of "steepest descent" or gradient to the P(0) surface leads to the parameter

estimate adjustment law:

é = -k aP - °k € 88 = +k € Y' (5.]8)
H A A ]
aa. da,
and ! '
B S (5.19)
i i

The €= 0 surface describes a hyperplane in the space spcnned by the parameter
estimates (ai, Abi). The desired estimates of (ai, bi) correspond to a unique "match
point® in the hyperplane. Parameter estimation convergence to this unique point in
the ( € = 0) -hyperplane is guaranteed by excitation of all variahles (yi, ui). Or in
other words, the system input must excite all system modes in order to guarantee con-

vergent estimation of parameters.
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Extensions:

Preliminary investigations on the "state variable filters" for Lion's algorithm, indicate
a relationship to the "observer, " state estimation filters [27]. This state variable ob-
sarver relationskip allows for the extersion of Lion's algorithm to systems containing
process and measurement noise. Lion's approach to non-linear systems may provide

an extension to the "observer identifier" approach of Reference [28].

Conclusion
Lion's [22, 23] parameter identification algorithm appears applicable to real time auto-
pilot applications [26]. State estimation filters ("observers") Ref.[27] provide guidance

in the selection of the “state variable filters" for the identification algorithm.

The system input must have the necessary harmonic content to excite all system modes
for the algorithm to converge. This appears not to be a practical problem since ran-

dom disturbances can provide this excitation.

5.4 Extensions of Lion's Technique (Luder's Technique)

Introduction
Lion's [22) porameter identification technique was recently rediscovered in the
literature [29]. The re-interpretation of Lion's results [29] in the light of observer

theory [27] provides a minimal state and parameter estimator. The development is

for a single~input single output case; extension to the more general is straight
forward [30],

Summary cf State and Parameter Estimator

Given the system transfer function (5.20) with unknown parameters (a, 8)

(5.20)
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This transfer function is expressed in terms of known design pgrameters (X) gives

Equation (5.21)

" b,
b‘ + Z -—-x-—“_' i
o) = - _.
a, 5.21
6-ap - 3 : (5.2
2 s + )«i

The relationship between (@, ) and (g, b) in terms of (1) can be derived by
equating (5.19) and (5.20).

The state vector equations (5.21) are motivated by the desire to associate the output
of Lion's [11 state variable filter with actual system states. See Figure 5.4.1 for the
block diagram representation of Equation (5.21).

o - [ ] . - 0 .
w= . w (5.21q)
r. F
]
ol 0 (5.21b)
; = . . v + . bT w
r.F .
. 0

where aT = (a], cony an)

b =(by, veer b)

n

F = diag (" AZ’ o, -xﬂ)

Wy Tu, vy Ty
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The "observer” [Z7] equation based on Equation 5.21b with w as input is given by

1

oT 0 :

v= . S )b we kiy-H
r.F *
° 0
if the observer galn is as follows:
. .
K" = (tay- 1,0, ..., 0) (5.23)

Thus we have the adaptive observer of Reference R9l. Finally using the "steepest
descent” R parameter adjustment law,

8. = vy v.e
t [ [
%. = 8. w, € ] (5024)
i it .
A A

We have the parameter and state estimation algorithm R9l. This algorithm is
summarized in Figure 5.4,2.

Lion's [22] development is more general than [29], Specifically non-stationary, noisy,
and nonlinear problems can be treated by Lion's [22] method but not by the method of
[29]. Analytic extension of [29] and computer simulations are considered to be poten-
tially fruitful areas of effort [29].

Example:

Given: A third order system with unknown parameters (oi, bi)

R — 2 . . s +3 .
R’ A3 (3.25)
Gls) = 3 5
(s -ay) - s+2X - s+A3
C 2 3
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v b+ 2 R v
1 2
> G(s) = ] -
! (s - al) - Z !
2 (3 + xi)
W] "; + + 3 v‘
| >1 By ><\f“ 1
t ["_1'—1 Y2 A * A V2 )
> - B ___Cv)_.__+ . 8, Ty
|
s A + A
; Y3 = * 173 T
5 : > b 3 TFX
\ s+ 13 3 + 3
R a |
K 7 ¥
( 1 5 =T A |
$ R
}s 1
i |
- R -
s (y -y s
H A ’é: Y % A
w v,
| ] ]
{
i o FIGURE 5.4,2: STATE AND PARAMETER ESTIMATOR
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Find:  The adaptive ccntrol law that fixes the closed-luop characteristics, e.g. L

suppose it is desired to set the closed loop poles at

( I "2t "'3) (5.26)

e o e ...w-m-uwumlm

Solution: Since the system eigenvalues are invariant under similarity tramsformation (

any convenient coordinate system can be used (see Figure S.4.1 ).
z, =vy =y

Zy) =9, +."2"’2 | - | 5.2)
Zy =agvg * b3w3

The' dynamics matrix in terms of (z) becomes -

A
r ™ Al
o 1 1 b'
= o -,\2 0 : z + b2 v (5.28)
5 0 =i by
The adaptive control law is derived by assuming:
Zz] _ i
U= (c] <, c3) 72 (5.29)
3
Then Equation (5.28) becomes
. _ o T
z=Az +by=(A+bc)z (5.30)

.

The adaptive gains (r:‘, €y € ) ore determined from Equation 5.30 by equating
coefficients of like powers of 5 in Equation (5.31).

det [-Is +A+bcT]= -(s+r]) (s.+r2) (s+r3) (5.31)
110
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replacing (a, b) by (@, 'B) we have the udaptive gain elements (cl, Y c3) as a

function of (&, B, A, o).

The above algorithm is consiclered as the “state-of-the-art" in on-line adaptive

coatrol system techniques.

5.5 - Extensions to Luder's Technique

¥ o An extension to Luder's [28] parameter-state estimation algorithm is presented in this
section. This extension is considered superior to the formulation given in [28]

because of the greater "state variable filter" output separation [22]. This greater

P,

filter separation results in better parameter observability, and hence better algorithm

[ performance.

Brief Development

It is assumed that the completely observable system can be described by an n-th
arder time-invariant differential equation. For the sake of simplicity, me rew can-
onical form is derived only for the single-input single~output case. Nevertheless the

extension of this canonical form to the multi-input case is straight forward.

Given: A stable stationary observable system transfer function with unknown
parometers (a,B8)
n

' B s-1
]

(5.32)

Gls) = n .
LR ) a, s"l
1

Find: Convergent parameter and state estimator
Solution:

{‘ : Restriction of Lion's [22] "state varigble filter" to a simg!c form leads to a state
‘estimate (observer) relationship, The transfer function (5.32) can be expressed more

(' conveniently in terms of known parameters ( Ai) as follows:

{——i o
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n=-1 , ’

Gl = 1 (5.33)
ST E M; o
1
where
. n-1
M 4 1

J=i (3+ Aj)

In expression (5.33) the (a, b) are now the parameters to be identified. The trans-
formation relating (a, b) to ( a ,B8) i;wolving (Xi) can be derived easily by equating
coefficients of like powers of s (see appendix B). The form of Equation (5.33) is
motivated by convergence requirement, and results from the replacement of the in-

tegrators in Figure 5.5.1b by "lossy integrators" Figure 5.5.2.

The new canonic form is as follows:

o
¥ (5.34)
. 0
w = /\ :"l w
0.....,0
0
' (5.35)

-
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() - 1 0
‘ where :

(‘ » L]

AN -]
. 0 “Aq
{_m .
| and where

bT = (bl’ bn) ; ¥y =y = system output

b

w, =u = system input

( "Figure 5.5.2 summarizes the above state variable form, note that if all A, =0 then
3 (a ,B) = (a, b) and we have the "expanded controllable canonic form" indicated in
Figure 5.5.1b.
Consider Equation (5.35), treat w as asystem input, then the state "observer" [27]
equation is given by Equation (5.36):
10 0
{ |
. P
A L T -
i vs= :- v+ . b w+kiy -Yy) (5.36)
| N\ 0 T
. h 1
( R RN
'C] see .on'l: 'dn"xn
(
( |
. ’ S ' 115
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Next select the "adaptive observer" gain

K = (0, ... 0, 1, <) (5.7

and substitute (a, b, w) for (a, b, w) in (5.36) yields the identifier (5.38), which

is summarized in Figure 5.5.2b.

; ' A
vy : 0 vy
' L]
‘ _ . : [bT N7
A = : 0 .
vn'l 1 0
A/ 0\ N~ : -‘- . n=1 (5.38)
Y A A ' -3 y
/ 9 %=1y n

The "Steepest descent” parameter cdjustment law [22] odjusts the parameters towards
the e = (y - ¥) = 0 surface. From Equations (5.35) and (5.38) we have:

n-1 n=1
é=z *ZOV"G*‘A))'"‘)& y+oy+bTw bTA(539)
1 - 1

The normal to the e = 0 hyperplane in the ‘space sparned by the parameter estimates
(a, %) is in the direction of "steepest descent.” Define F = 1/2 (é)2 as a metric to

the e = 0 surface, then

e! = - )’i _73 Zr.. £ - Yi e c‘ (5.40)

A A
= -8 (cew)=+8 ew (5.41)

** A minimal stationary (non-odaptive) observer résults if we select kT = (0,...,0,1,-'1")
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This parameter adjustment law completes the adaptive observer identification algorithm,

as sunmarized in Figure 5.5.3. The above parameter adjustment laws can also be

developed as o convenient selecticn satisfying the estimate convergence proof given

in the next section.

Proof of Estimate Convergence

The Lyspunov proof developed here is based on [28]. This is considered more elegant
than the convergence proof given in [22] , since no hueristic argument on hyperplane
motions is required, Before proceeding with the proof it is convenient to recall the

superposition theorem; that is the solution to (5.34) in terms of the solution to (5.32)
is given by (5.43).

é’l 1 0 5
. » .
| I . .
* 1.
- N A
: S OXwO (5.42
o 1 0 A
"n-1 _/\_ ) 1 n-1
v 0., .00 v
W) = 80 e (L1)  AwO) (5.49)
where w =Qn=u' :0
) o
1
. ]
L= o
1
Aw(0) = w(0) - W(O) - -0-.-.-_5-0. -

17
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The (G, B are estimates of (a, b); The (8, ¥, A) ore design porometers.

FIGURE 5.5,3: THE PARAMETER AND STATE ESTIMATOR
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Clearly if A, > 0, then the mﬂuence of ony initial estimate error (Aw(O)}i 0) will
dcccytozersast - @ .

Simtlorly the solution t0{5.35) in termsof the vector 21’ ¢ (ci, cn-l' y) is:

= To+ee [0 4O 540
where v_ =y, Av(0) = v(0) - % (0)

Using equations (5.43) and (5.44) in (5.39) results in

3-‘--(07-"1’) ?_ -al exp (<2-1) Av(0)

(5.45)
Ao+ BT -BT) & +b exp (AN AWO)

3
d
"

(qil soey on);

nw

(."’ ;oo' bn)o
Now select a Lypunav function

V= 1/2 e + 1/2 ”(\0”72 + /2 "Abns
PRV 4 n b -h 2 |

’ n
= 112 +1/2 Z (°i_1'. °_i_)_ +1/2 Z
1 ' 1

S

P 19
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Using the stationary ysfem assumption (g = b =0) we have: !

.\7= e + Zn (o '332 “é:’ + Zn (bi '?’z) (.'i';i) (5.47)
i s.
1

! i
i- i

inserting the "steepest descent" parameter adjustment low, Eq. 5,40 ond 5.41, we have:

. n n A A
V=e5+ez (0. -Q.) V. - e Z (b.-b.)w-‘ :
t ! i i ! t .
1 | .
(5.48)
seite@ =8N ¢ -ep-h ¥

Substitute Eq. (5.45) into (5.48) results in

Ve-a, fee [l em(an 4v0 +bT exp (A1) aw©] | (5.4

Recall that the autonomous or "unforced solution to (5.34) and (5.35) is:

()',A + An YA) = -QT exp (.Q f) V(O) + bT exp (,’/—}f) W(O) (5.50)

Clearly ()':A + Xn yA) ——» 0 ast — o if the system to be identified is
stable; i.e. strictly LHP poles. Hence for a stable system (5.49) becomes negative

definite, therefore parameter and stote estimate convergence is guaranteed.

Implicit in the above is .ne requirement that the input u contain at least n-distinct

frequencies (real or complex) [22],

Convergence Proof for Non-Stationary Systems

It is instructive to consider the non-stationary state and parameter estimation con-

vergence, These considerations yield guidelines in initial design parameter selection.
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Consider the time derivative of Equation 5.46 with & X O and b X 0. Carrying
out steps analogous to those resulting in Equation 5.49 results in Equation 5.51.

ot R ) a2 )

(5.51)

+e [-cT exp (1) Av(0) + bT exp (A\-1) Aw(O)]

Equation 5.51 indicates that maximum (A, 8, ¥) are desiroble for maximum state and
parameter estimate convergence rate. A set of large A, > 0 provides for id state
estimation convergence. A set of large (8,7) accelerates e "steepest descent"

parameter adjustment law.

A limitation on parometer estimate rate is presented by the frequencies of the system

to be identified. To see how this comes abour, consider the highest natural frequency

associated with parameter a.. This natural mode determines the rate of change of
AN which in turn governs the "observability” of any error in estimate and hence

removal of the error.

In conclusion the practical upper bound on (§,¥) >0 is dictated by the unknown
system natural frequencies. The maximum (A) is dictated by various numerical con-

ditioning considerotions.

Conclusion v

It has been shown that for any general input u, the odaptive observer described by
Equations 5.38, 5.40, 5.41, 5.42 will asymptotically yield the states and parameters
of an n“‘ order linear time-invariant system [27]. This adaptive observer does not
require auxiliary signals to be fed back into it [Z7], and hence its implementation is
very simple (see Figure 5.5.3).
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5.6 Quasi-Adaptive Control Systems

Most of the cdaptive control techniques discussed to date are still in the research stage
and present a high iechnical risk. Therefore, it is necessary to consider proven quasi-

adaptive systems for a space shuttle type opplication. The quasi-adaptive scheme to

‘be discussed has been applied successfully by Boeing on the U.S, Air Force SRAM

missile. This is an aerodynamically controlled missile that operates over a dynamic
pressure range of 240 to 1 inch. The static stability of this missile expressed in terms
of fins unlocked natural frequency ranges from 14 rad/sec unstable to 10 rad/sec stable.
The structural modes also limitad the design of the stabilization compensation for the

missile .

The basic autopilot was an attitude type similar to the system on shuttle. The missile
is guided by an onboard inertial measurement unit so that knowledge of the current
flight condition is available. The guidance system provides an attitude error signal

to the flight control system.

The flight centrol system design made use of the aforementioned attitude error signals,
along with rate gyros in all three axes, forming an essentially conventional attitude
control system configuration. Control fins were operated by proportional hydraulic
position servos. The system was unconventional in that dynamic compensation networks
were designed with four selectable sefs of characteristics to accommodate the wide
range of flight conditions. Network selection was determined on the basis of on-
board computed dynamic pressure, obtained from inertially sensed total velocity and
altitude, The compemsation network design required careful optimization to minimize
the number of networks required, within the comstraints of missile static stability and
structural bending coupling. This network optimization was accomplished through

trade studies of gain and phase margins vs. compensation network parameters.

This design approoch is amenable to well established analysis and simulation tech-
niques, permitting a thorough understanding and evaluation of the system prior to
commitment to actual flight test. The basic stabilization design was accomplished

using root locus and Nichols chart linearized stability analysis techniques. Simulations,
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digital, analog, and hybrid, were used to evaluate nonlinear system characteristics,

e S

such as aerodynamics ond fin actuator behavior. The control system has demonstrated
unqual ified success, performing its intended mission without significant modification

since the start of flight testing in 1969,

System Description

. st AT U o £S5 o A 4 TR i

The flight control system block diagram for this missile is shown in Figure 5.6.1. The
missile digital computer is seen to be the brains of this system selecting the rigid mode
and body bending mode filters. The four rigid mode filicis are chosen based upon
dynamic pressure while the two body bending filters are selected based upon moment

of inertia data.

Flight control gains were computed onboard based on inertially measured information,
along with programmed representations of control fin effectiveness and missile moment
of inertia. The control gain computation and network selection logic ars shown in

Figure 5.6.2.

The onboard determination of flight control gains and selection of compensation
networks as functions of missile-measured flight condition constituted u quasi~adaptive
mode of operation. The system adjusted itself according to measured flight condition,

but not through a dynamic mode of closed-loop sensing in the sual sense associated

_with adaptive control. This is a significant advantoge when there is a severaly con-

straining closeness between the frequency regime of rigid body control and that of
structural body bending, os was the case with SRAM,

The high degree of success of the design approach used on SRAM merits consideration
of this concept on other applications. It is especially amenable to any system that
requires an onboard digital computer to perform the guidance and navigation tasks.

The computer's functions can then be expanded to provide computational services for
the flight control stabilization task, using the basic information that is generated os
part of the inertial guidance function. The use of variable compensation characteristics
and flight control gains based on inertially sensed flight condition is not restricted to
an attitude controller; it is conceptually applicable to nommal acceleration control

systems, or fo any technique used to augment stability or derive stability for a

statically unstable or marginally stable vehicle,
' 123
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This quasi-adaptive design approach is applicable to any vehicle with widely varying

flight regimes. Therefore, a design similar to this could be applied to the shuttle

vehicle,

While in the mixed reaction-jet/aerodynamic and totally aerodynamic modes the filters
could be switched as a function of dynamic pressure, the loop gains could be changed
as a function of fin effectiveness and the mixing of control modes could be performed

as a function of dynamic pressure.

5.7  Digitizing Adaptive Control Systems

The previous discussions have not considered methods of choosing sampling rates for the
adaptive control system. Two methods of converting parameter adaptive control systems
into multirate designs will now be discussed. The first involves using the identified
parameters to determine the dominant response modes of the system. It is precisely
these modes which dictate the sampling rate requirements from a frequency folding
effects standpoint. Since the folding effects usually place a higher requirement on
sampling rate than stability considerations, this technique could be used if analysis
verified that this was in fact the case. The second involves adapting the sampling
rate to meet the time varying control system requirements, Assuming that the control
system was functionally dependent on time varying parameters, a digital implementation
could require different time varying sampling rates on the various control loops. From
strictly a digital realization standpoint the sampling rate could become a function of
the time varying filter break frequencies e.g. w > N © max where @ o is the
highest filter break frequency. Care would have to be exercised in blindly applying
this technique especially if the high frequency behavior of signals being sampled was
unknown. This situation could be alleviated by analog prefilters on specific signals.

A possible implementation might involve using both of these methods.
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APPENDIX A

THE SWITCH DECOMPOSITION METHOD OF ANALYZING
MULTIRATE SAMPLED DATA CONTROL SYSTEMS

It is illustrative to work o sample problem using both the original switch decomposition
method of Kranc [11land the updated version using the vector operation signal flow

graph technique. First let us find the system transfer function shown in Figure A-l

using Kranc's original method.

") i 1 /et
T +M\- s XAl T
™
'2'. T\
FIGURE A-1

KRANC'S ORIGINAL SWITCH DECOMPOSITION METHOD

The system in Figure A-1 is redrawn replacing the T/2 sampler by the equivalent

parallel combination of samplers sampling at rate T. The equivalent system is shown

in Figure A-2,

R(s) / o 1 1 Cls C
T FT T

+

B a1z
AN
FIGURE A-2

EQUIVALENT SYSTEM IN BLOCK DIAGRAM FORM
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The loop equations necessary to find the fransfer function are written in terms of the (

unknowns Bl(s) and Bz(s) and the output .quontity C(s). They are

-sT/2
By(s) = (..sl-) 'R*T - (_:-) By(s) - (° s ) Bofs) - (‘:‘) ! (A-1)
sT/2 sT/2 sT/2
) o7 () s () v (e o

et = (=) &7 - () 1) s T B (s)(A-3
(s s (s+1) BRI T\ G 19 - {3 (1) 2AHA-I) (

The Laplace transform of each sampler output is obtained from (A-1}, (A-2) and (A-3).
They are |

, T
T T -T/2\* T
B*T;_]_* R*T-..I_*B*T_ hd g*T__]_* c*T(A.4)
1 5 1 s 2 s |

*T *T *T
T es'I/Z) R (esT/Z 1 1 T R esT/2 T
B = (_s" R "‘s“) By - (—s’) B - ) ¢ A

I

TN T (Y T DT (2N
o = () *" - () < () o () oo

Rearranging and taking the z-transform yields

Z(Y + 1/s) B] (z) + Z.l/2 (1/s) 82 (z) + Z(1/s) Cl2) = Z(1/s) R(z) (A-7)

1 1 1
Z(m)ax‘z) “Zi/2 (s = ,) Bz + 2 (‘ * T(rm') ¢tz)
1 (A-9)

where

2 =o', Z(R) = H) ond Z, 4, (Re) = Fiz, 1/2) (A-10)
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Applying Cramer's rule to Equations (7), (8), and (9) yields the transfer function 2Ol

as a ratio of two determinants.

Z( + 1/s) r4 /z(l/s) Z (/)
2z ZV2 (1/s) Z (1 +1/) z 21/2 (1/s)
| V4 ! Z ! p4 '
Cl2) (s G+ D 12\sG+ 1D (s s + )
o - (A-11)
Z(1+1/) Zy /2 (1/5) Z(1/s)
z z]/z(l/s) Z (1 + 1/s) Z]/z(l/s)
Germ)  2nalwe) 2 0wn)
(s 5+ 1Y 1/2\s(s + 1) s+ )

Expanding each determinate along the first column allows C(z)/R(z) to be written as

a ratio of two polynomials.

1 1 ]
Cla) _ 2(7—1-5-’ — ) +Z (1/s) Z(_S—Z—_T’S* )—z ZMZ (1/s) 21/2 (W)
P2z Z0/R 20/ =22y, (10 2, (1) + 2 (T(:Tl)) ;

{A-32)

Z (/s 2Z (s s]+ )'Z 2y (V9 Z4 (Ws]_ﬂ?)

Each of the terms in the numerator and denominator of C(z)/R(z) can be converted

to functions of z hy consulting a tuble of z and modified z transform pairs.

Vector Operation Signal Flow Graph Technique

Using the vector operation sigral flow graph technique the flow graph for the system
shown in Figure A=l con be drawn. The flow graph is presented in Figure A-3.
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FIGURE A-3
EQUIVALENT SYSTEM IN SIGNAL FLOW FORM

The equations for each ouiput node immediately follow from Figure A-3.

8= N ) @ - N B’ - o) _ Ay
C= (/9 (-s-,'ﬁ) Re? - e gl o (A-14)

where EN+ is the column vector of advances with components EiN+ = eST U-])/N,

i=1,2, ..., N and EN- is the row vector of delays with components

EiN- - e-sT (u—l)/N’ =1, 2, oun, N.
The Laplace transform of each output node, after sampling, is given by Equations (A-15)
and (A‘lé)q

*T -
g*T = {_E_N~+ (1/s) i (R*T - EN' g*T - ¢y (A-15)
g
o - j(l/s) (1/s +1)} R - N7 g - el (A-16)

If we shorten our nctation by defining

*T *T
o+ 4 _Z_[_{NxN + BN /) EN-z , o't 3E_N+ Ws)i ' (A-17)
o ")
'1*” 4 {(1/,) (1/s +1) g_N'z and F+ & f(l/s) (/s + l)i (A-18)
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where the prime (A-1) indicates the trarspose, (A-15) and (A-14§ combine to form the
following matrix input-output transfer function.

cw . F@-b'@ 0@ a0

) (A-19)
T ik b @0 @ e

Using the identities developed by Boykin and Frazier 2] C(z)/R(z) can easily be

_converted to a ratio of polynomials. The identities, which are used to break ' 'wn

vector/matrix relationships of the %rm EN+ G, G EN-, and EN+ G _E_N- intc scalar
equations are listed in Equations A-20) through @A-23).

N-I
N+ , N- _ , T/N . -
N-1 .
N+ .1 N )
(_E_ Y) (2) N & Y (zp p) % (A-21)
N -1
(Y EN')(z) = YN @ oWy (A-22)
- P=0 P P -p

P=0 Y
(z wp)
where w = e FZN;'/N, 2 = eST, 7 = esT/N
P N
X, Y and R are scalar functions in z w
(1] (1]
[ A _ -1
€p = P Yo = [Mip
‘ N-1 N-1
| M  Mp |
L 7\|p=z]/N e|2»‘P/N P=0,1, ..., N-I
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N -1

T/N - P,T 1-P/N R

X gy W) = Eo (2 w) X (@ ) (A-24a)
and

T, N Ne! N -1 N-P

X dzg PN =N T X (W) (7 W) (A -24b)

k=0

To expand (A-19) into a ratio of polynomials let G = 1/s and H = 1/5+1 and note
that

T S SN (A-25)

p(2)

1
| L
| v—t
+
~
m
p4
+
(8]
|m
yd
~
NS
Z
Z
~—
—

"N -1
- _— T/N -1

N}E ] ! (A-26)
= (e v' ) : R -
p=0 PP (|+GT/N(zpwp))

Using Equations (A-21), (A-22) and {A-23

N-1 N-1 _
b' D.l a= ( > G HT/N (zN wk) v'k) > e Vv TI7N
- 7 \k=o ~N\g=0 2 1+G T (2w,

N-1

m=0

N-1 ou™ (zp ) c"N (2, w)

-2
VN (A-27)

= 1/N

P=0 1+ G (zpr)
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Finding F' (2 ) & G H (zp) ! tetting N = P in Equation (A-24b)

N -1 GHT/N(Z w§+GT/N(z W)GHT/N(Z w )
p P P P N p (a-29)

T N
F (z,, )= IN
N P=0 1+67/N (zpr)

Subtracting expression (A-27) from (A-28) yields the numerator of the input-outpul
transfer function

T/N
_ N -1 G H (z w)
FMN-b0laeM=INn 3 PP (A-29)
N ~ = =N ~ T/N
P=0 1+G (zNw )
P
There fore
/N
l_ N -1 GH (zp wp)
/N
Cz) _ N pzo  1+6"N@z, w) (A-30)
RE) ; N=1 GHNEG w)
1 + oY 2 T/NJ P
P =0 1 +G (ZP Wp)

The expression is valid for any positive ‘nteger N. For our example N = 2 and

Equation (A-30) reduces to

C(z) _ Z (GH) + Z(G) Z(GH) - z Zj /7 (G) Zj/2 (GH)
k) 1+22(G) + Z(G) Z(G) - 2 2y 4, (G) Z; , {G) +Z (GH) + Z(G) Z(GH)

(A=31)

If 1/s is substituted for G and 1/s+ 1 for H Equation (A~31) is equal to Equation
@A-12, the answer which was obtained using Kranc's oiiginal switch decomposition

method,
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Both Kranc's switch decomposition method and the vector operation signal flow graph

technique have inherent advantages and disadvantages., Kranc's original method

is straight forword but becomes cumbersome as the complexity of the system increases.
The vector operation signal flow graph technique has the advantage of all.wing the
governing loop equations to be easily written down by inspection of the flow graph.

The resulting vector/matrix equations however can become hord to deal with even
though the identities and relationships introduced by Boykin and Frazier [12] mokes
this task somewhat easier,
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RELATING (a ,8) TO (a, b)

Exomple of the relationship between (@, B) ond (a, b) of Equations (5.32) and (5.33)

54 + 53 + bz A + bl
Gl = s+Ay s +AE+A) (s + A6 + A ~ &)
‘ (8-1)
s+ A‘ + 04) + B . %2 + %
hh, BFAETA)  GEAE AE* A

54.334' ﬂ3s2+325+3‘
&= — 3 2, (8-2
s+c4s+03s a, s+ a

Multiplying both numerator and denominator of Equation (B-1) by (s + Aa) (s +Az)(s + A])
results in a ratio of polynomials of the form of Equation(B-2). Comparing coefficients
of like powers of "s” results in the following transformations.

t\ /‘ NN M M A
2 0 1V M2 [2 Atdy )N
= YA A
5 o} o 1 Mt At A
. ol o 0 i
T
% o M A2 A3 A
*2 °2 Ap Az Ay T A A A My Aghy T Ay Ag Ay
= T . .
Qa 03 A‘A2+A3A4+A4A]+A3A2+Klka A2A4.
¢4 04 A‘+ L£+ ;\3+ )‘4

Note that the triongular form simplifies inversion,
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